Leptin regulates lipid metabolism, maximizing insulin sensitivity; however, peripheral leptin resistance is not fully understood, and its contribution to metabolic dysfunction-associated steatotic liver disease (MASLD) is unclear. This study evaluated the contribution of the leptin axis to MASLD in humans. Forty-three participants, mostly female (86.04%), who underwent cholecystectomy were biopsied. Of the participants, 24 were healthy controls, 8 had MASLD, and 11 had metabolic dysfunction-associated steatohepatitis (MASH). Clinical and biochemical data and the gene expression of leptin, leptin receptor (), suppressor of cytokine signaling 3 (), sterol regulatory element-binding transcription factor 1 (), stearoyl-CoA desaturase-1 (), and patatin-like phospholipase domain-containing protein 2 (), were determined from liver and adipose tissue. Higher serum leptin and levels in the omental adipose tissue (OAT) and liver with MASH were found. In the liver, was positively correlated with leptin expression in adipose tissue, and was correlated with . In OAT, was correlated with insulin resistance and transaminase enzymes ( < 0.05 for all. In conclusion, we evidenced the correlation between the peripheral leptin resistance axis in OAT-liver crosstalk and the complications of MASLD in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11203746PMC
http://dx.doi.org/10.3390/ijms25126420DOI Listing

Publication Analysis

Top Keywords

adipose tissue
16
peripheral leptin
12
leptin resistance
12
masld humans
12
leptin
9
omental adipose
8
metabolic dysfunction-associated
8
liver
5
masld
5
evidence peripheral
4

Similar Publications

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

Epicardial Adipose Tissue from Computed Tomography: a Missing Link in Premature Coronary Artery Disease?

Eur Heart J Cardiovasc Imaging

January 2025

Sorbonne Université, unité d'imagerie cardiovasculaire et thoracique, Hôpital La Pitié Salpêtrière (AP-HP), Laboratoire d'Imagerie Biomédicale, INSERM, CNRS, Institute of Cardiometabolism and Nutrition, ACTION Group, Paris, France.

Purpose: Epicardial adipose tissue (EAT) could contribute to the specific atherosclerosis profile observed in premature coronary artery disease (pCAD) characterized by accelerated plaque burden (calcified and non-calcified), high risk plaque features (HRP) and ischemic recurrence. Our aims were to describe EAT volume and density in pCAD compared to asymptomatic individuals matched on CV risk factors and to study their relationship with coronary plaque severity extension and vulnerability.

Materials And Methods: 208 patients who underwent coronary computed tomography angiography (CCTA) were analyzed.

View Article and Find Full Text PDF

Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ.

View Article and Find Full Text PDF

Background: The activation of brown adipose tissue (BAT) is associated with improved metabolic health in humans. We previously identified the mitochondrial protein 4-Nitrophenylphosphatase Domain and Non-Neuronal SNAP25-Like 1 (Nipsnap1) as a novel regulatory factor that integrates with lipid metabolism and is critical to sustain the long-term activation of BAT, but the precise mechanism and function of Nipsnap1 is unknown.

Objectives: Define how the regulatory factor Nipsnap1 integrates with lipid metabolism.

View Article and Find Full Text PDF

Background: Type 2 Diabetes Mellitus (T2DM) is a significant public health burden. Emerging evidence links volatile organic compounds (VOCs), such as benzene to endocrine disruption and metabolic dysfunction. However, the effects of chronic environmentally relevant VOC exposures on metabolic health are still emerging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!