Insights from Murine Studies on the Site Specificity of Atherosclerosis.

Int J Mol Sci

Department of Pathology, University of Chicago, Chicago, IL 60637, USA.

Published: June 2024

Atherosclerosis is an inflammatory reaction that develops at specific regions within the artery wall and at specific sites of the arterial tree over a varying time frame in response to a variety of risk factors. The mechanisms that account for the interaction of systemic factors and atherosclerosis-susceptible regions of the arterial tree to mediate this site-specific development of atherosclerosis are not clear. The dynamics of blood flow has a major influence on where in the arterial tree atherosclerosis develops, priming the site for interactions with atherosclerotic risk factors and inducing cellular and molecular participants in atherogenesis. But how this accounts for lesion development at various locations along the vascular tree across differing time frames still requires additional study. Currently, murine models are favored for the experimental study of atherogenesis and provide the most insight into the mechanisms that may contribute to the development of atherosclerosis. Based largely on these studies, in this review, we discuss the role of hemodynamic shear stress, SR-B1, and other factors that may contribute to the site-specific development of atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204064PMC
http://dx.doi.org/10.3390/ijms25126375DOI Listing

Publication Analysis

Top Keywords

arterial tree
12
development atherosclerosis
12
risk factors
8
site-specific development
8
atherosclerosis
6
insights murine
4
murine studies
4
studies site
4
site specificity
4
specificity atherosclerosis
4

Similar Publications

Purpose: Moyamoya disease (MMD) is a rare cerebrovascular disorder characterized by the narrowing of arteries at the brain's base. While cerebral angiography is the gold standard for diagnosis, high-resolution vessel wall magnetic resonance imaging (VW-MRI) has recently emerged as a non-invasive diagnostic tool. This systematic review aims to provide insights into the role of VW-MRI in enhancing the diagnosis and management of MMD.

View Article and Find Full Text PDF

Purpose: To describe a case in which a right replaced posterior cerebral artery (PCA) was associated with an ipsilateral superior cerebellar artery (SCA) type persistent trigeminal artery (PTA) variant.

Methods: A 53-year-old man who had been diagnosed with chronic dissection of the left vertebral artery (VA) 4 months previously underwent follow-up magnetic resonance (MR) angiography using a 3-Tesla scanner.

Results: MR angiography showed a slightly dilated left VA at the terminal segment without interval change.

View Article and Find Full Text PDF

Photon-counting detector computed tomography (PCD-CT) offers energy-resolved CT data with enhanced resolution, reduced electronic noise, and improved tissue contrast. This study aimed to evaluate the visibility of intracranial perforating arteries on ultra-high-resolution (UHR) CT angiography (CTA) on PCD-CT. A retrospective analysis of intracranial UHR PCD-CTA was performed for 30 patients.

View Article and Find Full Text PDF

Veratridine Induces Vasorelaxation in Mouse Cecocolic Mesenteric Arteries.

Toxins (Basel)

December 2024

Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France.

The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na (Na) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that Na channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery.

View Article and Find Full Text PDF

Background: Major aortopulmonary collateral arteries (MAPCAs) are rare remnants of pulmonary circulation embryological development usually associated with complex congenital anomalies of the right ventricular outflow tract and pulmonary arteries. Effective management requires surgical unifocalization of MAPCAs and native pulmonary arteries (NPAs). Traditional imaging may lack the spatial clarity needed for precise surgical planning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!