A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reduction of Oxygen Production by Algal Cells in the Presence of O-Chlorobenzylidene Malononitrile. | LitMetric

Chemical compounds, such as the CS gas employed in military operations, have a number of characteristics that impact the ecosystem by upsetting its natural balance. In this work, the toxicity limit and microorganism's reaction to the oxidative stress induced by O-chlorobenzylidenemalonitrile, a chemical found in CS gas, were assessed in relation to the green algae . A number of parameters, including the cell growth curve, the percent inhibition in yield, the dry cell weight, the percentage viability and productivity of algal biomass flocculation activity, and the change in oxygen production, were analyzed in order to comprehend the toxicological mechanisms of O-chlorobenzylidenemalonitrile on algal culture. Using fluorescence and Fourier transform infrared spectroscopy (FTIR), the content of chlorophyll pigments was determined. The values obtained for pH during the adaptation period of the culture were between 6.0 and 6.8, O had values between 6.5 and 7.0 mg/L, and the conductivity was 165-210 µS/cm. For the 20 µg/mL O-chlorobenzylidenemalonitrile concentration, the cell viability percentage was over 97.4%, and for the 150 µg/mL O-chlorobenzylidenemalonitrile concentration was 74%. The EC value for was determined from the slope of the calibration curve; it was estimated by extrapolation to the value of 298.24 µg/mL. With the help of this study, basic information on the toxicity of O-chlorobenzylidenemalonitrile to aquatic creatures will be available, which will serve as a foundation for evaluating the possible effects on aquatic ecosystems. The management of the decontamination of the impacted areas could take the results into consideration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200456PMC
http://dx.doi.org/10.3390/bioengineering11060623DOI Listing

Publication Analysis

Top Keywords

oxygen production
8
µg/ml o-chlorobenzylidenemalonitrile
8
o-chlorobenzylidenemalonitrile concentration
8
o-chlorobenzylidenemalonitrile
5
reduction oxygen
4
production algal
4
algal cells
4
cells presence
4
presence o-chlorobenzylidene
4
o-chlorobenzylidene malononitrile
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!