The continuous manufacturing of biologics offers significant advantages in terms of reducing manufacturing costs and increasing capacity, but it is not yet widely implemented by the industry due to major challenges in the automation, scheduling, process monitoring, continued process verification, and real-time control of multiple interconnected processing steps, which must be tightly controlled to produce a safe and efficacious product. The process produces a large amount of data from different sensors, analytical instruments, and offline analyses, requiring organization, storage, and analyses for process monitoring and control without compromising accuracy. We present a case study of a cyber-physical production system (CPPS) for the continuous manufacturing of mAbs that provides an automation infrastructure for data collection and storage in a data historian, along with data management tools that enable real-time analysis of the ongoing process using multivariate algorithms. The CPPS also facilitates process control and provides support in handling deviations at the process level by allowing the continuous train to re-adjust itself via a series of interconnected surge tanks and by recommending corrective actions to the operator. Successful steady-state operation is demonstrated for 55 h with end-to-end process automation and data collection via a range of in-line and at-line sensors. Following this, a series of deviations in the downstream unit operations, including affinity capture chromatography, cation exchange chromatography, and ultrafiltration, are monitored and tracked using multivariate approaches and in-process controls. The system is in line with Industry 4.0 and smart manufacturing concepts and is the first end-to-end CPPS for the continuous manufacturing of mAbs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200404PMC
http://dx.doi.org/10.3390/bioengineering11060610DOI Listing

Publication Analysis

Top Keywords

continuous manufacturing
16
cyber-physical production
8
production system
8
process
8
process monitoring
8
cpps continuous
8
manufacturing mabs
8
data collection
8
manufacturing
6
continuous
5

Similar Publications

Remote epitaxial crystalline perovskites for ultrahigh-resolution micro-LED displays.

Nat Nanotechnol

January 2025

Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.

The miniaturization of light-emitting diodes (LEDs) is pivotal in ultrahigh-resolution displays. Metal-halide perovskites promise efficient light emission, long-range carrier transport and scalable manufacturing for bright microscale LED (micro-LED) displays. However, thin-film perovskites with inhomogeneous spatial distribution of light emission and unstable surface under lithography are incompatible with the micro-LED devices.

View Article and Find Full Text PDF

The aim of this study is to demonstrate the enhanced efficiency of combined therapeutic strategies for the treatment of growing tumors, based on computational experiments of a continuous-level modeling framework. In particular, the tumor growth is simulated within a host tissue and treated as a multiphase fluid, with each cellular species considered as a distinct fluid phase. Our model integrates the impact of chemical species on tumor dynamics, and we model -through reaction-diffusion equations- the spatio-temporal evolution of oxygen, vascular endothelial growth factor (VEGF) and chemotherapeutic agents.

View Article and Find Full Text PDF

Background: Dosimetric commissioning and quality assurance (QA) for linear accelerators (LINACs) present a significant challenge for clinical physicists due to the high measurement workload and stringent precision standards. This challenge is exacerbated for radiosurgery LINACs because of increased measurement uncertainty and more demanding setup accuracy for small-field beams. Optimizing physicists' effort during beam measurements while ensuring the quality of the measured data is crucial for clinical efficiency and patient safety.

View Article and Find Full Text PDF

As the global population continues to grow and the pressure on livestock and poultry supply increases, the oceans have become an increasingly important source of quality food for future generations. However, nutrient-rich aquatic product is susceptible to lipid oxidation during storage and transport, reducing its nutritional value and increasing safety risks. Therefore, identifying the specific effects of lipid oxidation on aquatic products has become particularly critical.

View Article and Find Full Text PDF

Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!