A Convexity-Preserving Level-Set Method for the Segmentation of Tumor Organoids.

Bioengineering (Basel)

School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, China.

Published: June 2024

Tumor organoid cultures play a crucial role in clinical practice, particularly in guiding medication by accurately determining the morphology and size of the organoids. However, segmenting individual tumor organoids is challenging due to their inhomogeneous internal intensity and overlapping structures. This paper proposes a convexity-preserving level-set segmentation 4 model based on the characteristics of tumor organoid images to segment individual tumor organoids precisely. Considering the predominant spherical shape exhibited by organoid growth, we propose a level-set model that includes a data-driven term, a curvature term, and a regularization term. The data-driven term pulls the contour to the vicinity of the boundary; the curvature term ensures the maintenance of convexity in the targeted segmentation, and the regularization term controls the smoothness and propagation of the contour. The proposed model aids in overcoming interference from factors such as overlap and noise, enabling the evolving curve to converge to the actual boundary of the target accurately. Furthermore, we propose a selectable and targeted initialization method that guarantees precise segmentation of specific regions of interest. Experiments on 51 pancreatic ductal adenocarcinoma organoid images show that our model achieved excellent segmentation results. The average Dice value and computation time are 98.81±0.48% and 20.67 s. Compared with the C-V and CPLSE models, it is more accurate and takes less time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200484PMC
http://dx.doi.org/10.3390/bioengineering11060601DOI Listing

Publication Analysis

Top Keywords

tumor organoids
12
convexity-preserving level-set
8
tumor organoid
8
individual tumor
8
organoid images
8
data-driven term
8
curvature term
8
regularization term
8
term
6
segmentation
5

Similar Publications

Establishing a living biobank of pediatric high-grade glioma and ependymoma suitable for cancer pharmacology.

Neuro Oncol

January 2025

Childhood Cancer & Cell Death team (C3 team), Consortium South-ROCK, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France.

Background: Brain tumors are the deadliest solid tumors in children and adolescents. Most of these tumors are glial in origin and exhibit strong heterogeneity, hampering the development of effective therapeutic strategies. In the past decades, patient-derived tumor organoids (PDT-O) have emerged as powerful tools for modeling tumoral cell diversity and dynamics, and they could then help defining new therapeutic options for pediatric brain tumors.

View Article and Find Full Text PDF

Mesenchymal stromal cells promote the formation of lung cancer organoids via Kindlin-2.

Stem Cell Res Ther

January 2025

Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.

Background: Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids.

View Article and Find Full Text PDF

Background: Recent research indicates a role of gut microbiota in development and progression of life-threatening diseases such as cancer. Carcinomas of the biliary ducts, the so-called cholangiocarcinomas, are known for their aggressive tumor biology, implying poor prognosis of affected patients. An impact of the gut microbiota on cholangiocarcinoma development and progression is plausible due to the enterohepatic circulation and is therefore the subject of scientific debate, however evidence is still lacking.

View Article and Find Full Text PDF

Application of tumor organoids simulating the tumor microenvironment in basic and clinical research of tumor immunotherapy.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

August 2024

Cancer Center, Xiangya Hospital, Central South University, Hunan Key Laboratory of Molecular Radiation Oncology, International Cooperation Base in Science and Technology for Cancer Precision Medicine, National Clinical Research Center for Geriatric Disorders, Changsha 410008.

Immunotherapy has led to groundbreaking advances in anti-tumor treatment, yet significant clinical challenges remain such as the low proportion of beneficiaries and the lack of effective platforms for predicting therapeutic response. Organoid technology provides a novel solution to these issues. Organoids are three-dimensional tissue cultures derived from adult stem cells or pluripotent stem cells that closely replicate the structural and biological characteristics of native organs, demonstrating particularly strong potential in modeling the tumor microenvironment (TME).

View Article and Find Full Text PDF

Spliced exon9 ADRM1 promotes liver oncogenicity via selective degradation of tumor suppressor FBXW7.

J Hepatol

January 2025

Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China. Electronic address:

Background & Aims: The ubiquitin receptor ADRM1/Rpn13 governs the specificity of eukaryotic protein degradation. By SMRT sequencing, we first discovered a novel spliced variant of ADRM1 with a skipped exon 9, termed ADRM1-ΔEx9, in human hepatocellular carcinoma (HCC). This study aimed to elucidate this novel ubiquitin receptor's underlying biology and clinical implications in HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!