A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Self-Polymerizing Mesh of Nano-Tethers for the Mechanical Constraint of Degraded Intervertebral Discs-A Review of 25 Years of Pre-Clinical and Early Clinical Research. | LitMetric

Genipin polymers are self-forming tensile-load-carrying oligomers, derived from the gardenia fruit, that covalently bond to amines on collagen. The potential therapeutic mechanical benefits of a non-discrete in situ forming mesh of genipin oligomers for degraded spinal discs were first conceived in 1998. Over more than two decades, numerous studies have demonstrated the immediate mechanical effects of this injectable, intra-annular polymeric mesh including an early demonstration of an effect on clinical outcomes for chronic or recurrent discogenic low back pain. This literature review focused on articles investigating mechanical effects in cadaveric animal and human spinal discs, biochemical mechanism of action studies, articles describing the role of mechanical degradation in the pathogenesis of degenerative disc disease, initial clinical outcomes and articles describing current discogenic low back pain treatment algorithms. On the basis of these results, clinical indications that align with the capabilities of this novel injectable polymer-based treatment strategy are discussed. It is intended that this review of a novel nano-scale material-based solution for mechanical deficiencies in biologically limited tissues may provide a helpful example for other innovations in spinal diseases and similarly challenging musculoskeletal disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200395PMC
http://dx.doi.org/10.3390/bioengineering11060535DOI Listing

Publication Analysis

Top Keywords

spinal discs
8
mechanical effects
8
clinical outcomes
8
discogenic low
8
low pain
8
articles describing
8
mechanical
6
self-polymerizing mesh
4
mesh nano-tethers
4
nano-tethers mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!