Motivation: High-resolution Hi-C data, capable of detecting chromatin features below the level of Topologically Associating Domains (TADs), significantly enhance our understanding of gene regulation. Micro-C, a variant of Hi-C incorporating a micrococcal nuclease (MNase) digestion step to examine interactions between nucleosome pairs, has been developed to overcome the resolution limitations of Hi-C. However, Micro-C experiments pose greater technical challenges compared to Hi-C, owing to the need for precise MNase digestion control and higher-resolution sequencing. Therefore, developing computational methods to derive Micro-C data from existing Hi-C datasets could lead to better usage of a large amount of existing Hi-C data in the scientific community and cost savings.
Results: We developed C2c ("high" or upper case C to "micro" or lower case c), a computational tool based on a residual neural network to learn the mapping between Hi-C and Micro-C contact matrices and then predict Micro-C contact matrices based on Hi-C contact matrices. Our evaluation results show that the predicted Micro-C contact matrices reveal more chromatin loops than the input Hi-C contact matrices, and more of the loops detected from predicted Micro-C match the promoter-enhancer interactions. Furthermore, we found that the mutual loops from real and predicted Micro-C better match the ChIA-PET data compared to Hi-C and real Micro-C loops, and the predicted Micro-C leads to more TAD-boundaries detected compared to the Hi-C data. The website URL of C2c can be found in the Data Availability Statement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11203216 | PMC |
http://dx.doi.org/10.3390/genes15060673 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!