Background: Idiopathic pulmonary fibrosis (IPF) is a type of interstitial lung disease characterized by unknown causes and a poor prognosis. Recent research indicates that age-related mechanisms, such as cellular senescence, may play a role in the development of this condition. However, the relationship between cellular senescence and clinical outcomes in IPF remains uncertain.

Methods: Data from the GSE70867 database were meticulously analyzed in this study. The research employed differential expression analysis, as well as univariate and multivariate Cox regression analysis, to pinpoint senescence-related genes (SRGs) linked to prognosis and construct a prognostic risk model. The model's clinical relevance and its connection to potential biological processes were systematically assessed in training and testing datasets. Additionally, the expression location of prognosis-related SRGs was identified through immunohistochemical staining, and the correlation between SRGs and immune cell infiltration was deduced using the GSE28221 dataset.

Result: The prognostic risk model was constructed based on five SRGs (cellular communication network factor 1, CYR61, stratifin, SFN, megakaryocyte-associated tyrosine kinase, MATK, C-X-C motif chemokine ligand 1, CXCL1, LIM domain, and actin binding 1, LIMA1). Both Kaplan-Meier (KM) curves ( = 0.005) and time-dependent receiver operating characteristic (ROC) analysis affirmed the predictive accuracy of this model in testing datasets, with respective areas under the ROC curve at 1-, 2-, and 3-years being 0.721, 0.802, and 0.739. Furthermore, qRT-RCR analysis and immunohistochemical staining verify the differential expression of SRGs in IPF samples and controls. Moreover, patients in the high-risk group contained higher infiltration levels of neutrophils, eosinophils, and M1 macrophages in BALF, which appeared to be independent indicators of poor prognosis in IPF patients.

Conclusion: Our research reveals the effectiveness of the 5 SRGs model in BALF for risk stratification and prognosis prediction in IPF patients, providing new insights into the immune infiltration of IPF progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201203PMC
http://dx.doi.org/10.3390/biomedicines12061246DOI Listing

Publication Analysis

Top Keywords

senescence-related genes
8
poor prognosis
8
cellular senescence
8
differential expression
8
prognostic risk
8
risk model
8
testing datasets
8
immunohistochemical staining
8
ipf
7
srgs
6

Similar Publications

Non-small cell lung cancer (NSCLC), half of which are lung adenocarcinoma (LUAD), is one of the most widely spread cancers in the world. Telomerase, which maintains telomere length and chromosomal integrity, enables cancer cells to avoid replicative senescence. When telomerase is inhibited, cancer cells' senescence began, preventing them from growing indefinitely.

View Article and Find Full Text PDF

The prognostic value of differentially expressed senescence-related genes(DESRGs) in ST-segment elevation myocardial infarction(STEMI) patients is unclear. We used GEO2R to identify DESRGs from GSE60993 and performed functional enrichment analysis. We built an optimal prognostic model with LASSO penalized Cox regression via GSE49925.

View Article and Find Full Text PDF

Expression pattern of cancer-associated cellular senescence genes in clear cell renal cell carcinoma distinguishes tumor subclasses with clinical implications.

Sci Rep

January 2025

Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.

Clear cell renal cell carcinoma (ccRCC) is a highly lethal subtype of renal cancer. Accumulating evidence suggests cellular senescence impacts tumor development and progression. This study aimed to identify ccRCC subtypes based on a cellular senescence gene signature and assess their clinical relevance.

View Article and Find Full Text PDF

The aim of this study is to screen key target genes of osteoarthritis associated with aging and to preliminarily explore the associated immune infiltration cells and potential drugs. Differentially expressed senescence-related genes (DESRGs) selected from Cellular senescence-related genes (SRGs) and differentially expressed genes (DEGs) were analyzed using Gene Ontology enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and protein-protein interaction networks. Hub genes in DESRGs were selected based on degree, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve.

View Article and Find Full Text PDF

Osteosarcoma is the most common malignant bone tumor and is frequently diagnosed in juvenile. Cellular senescence is a fundamental hallmark of osteosarcoma and plays a vital role in the initiation and progression of aging and tumorigenesis. Long non-coding RNAs (lncRNAs) are implicated in tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!