Aging is a fundamental biological process that progressively impairs the functionality of the bodily systems, leading to an increased risk of diseases. Telomere length is one of the most often used biomarkers of aging. Recent research has focused on developing interventions to mitigate the effects of aging and improve the quality of life. The objective of this study was to investigate the combined effect of exercise and Ramadan fasting on telomere length. Twenty-nine young, non-obese, healthy females were randomized into two groups: the control group underwent a 4-week exercise training program, and the second group underwent a 4-week exercise training program while fasting during Ramadan. Blood samples were collected, and measurements of clinical traits, cytokines, oxidative stress, and telomere length were performed before and after intervention. Telomere length increased significantly from baseline in the exercise-while-fasting group, but showed no significant change in the exercise control group. This increase was accompanied by a reduction in TNF-α, among other cytokines. Additionally, a significant positive correlation was observed between the mean change in telomere length and HDL in the exercise-while-fasting group only. This study is the first to report an increase in telomere length after combining Ramadan fasting with training, suggesting that exercising while fasting may be an effective tool for slowing down the aging rate. Further studies using larger and more diverse cohorts are warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200901PMC
http://dx.doi.org/10.3390/biomedicines12061182DOI Listing

Publication Analysis

Top Keywords

telomere length
28
ramadan fasting
12
exercise ramadan
8
fasting telomere
8
control group
8
group underwent
8
underwent 4-week
8
4-week exercise
8
exercise training
8
training program
8

Similar Publications

Objectives: To examine the association of social connections with blood leukocyte telomere length (LTL) and all-cause mortality in older Costa Ricans.

Methods: Utilizing data from the Costa Rican Longevity and Healthy Aging Study (CRELES), a prospective cohort of 2827 individuals aged 60 and above followed since 2004, we constructed a Social Network Index (SNI) based on marital status, household size, interaction with non-cohabitating adult children, and church attendance. We used linear regression to assess SNI's association with baseline LTL ( = 1113), and Cox proportional-hazard models to examine SNI's relationship with all-cause mortality ( = 2735).

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC), half of which are lung adenocarcinoma (LUAD), is one of the most widely spread cancers in the world. Telomerase, which maintains telomere length and chromosomal integrity, enables cancer cells to avoid replicative senescence. When telomerase is inhibited, cancer cells' senescence began, preventing them from growing indefinitely.

View Article and Find Full Text PDF

Segmental duplications (SDs) contribute significantly to human disease, evolution and diversity but have been difficult to resolve at the sequence level. We present a population genetics survey of SDs by analyzing 170 human genome assemblies (from 85 samples representing 38 Africans and 47 non-Africans) in which the majority of autosomal SDs are fully resolved using long-read sequence assembly. Excluding the acrocentric short arms and sex chromosomes, we identify 173.

View Article and Find Full Text PDF

Biomarkers of ageing (BA) can predict health risks beyond chronological age, but little is known about how marital/living status affects longitudinal changes in BA. We examined the association between marital/living status and BA over time using the-Swedish-Adoption/Twin-Study-of-Aging (SATSA) cohort. Four BAs were analyzed: telomere length (TL) (638 individuals; 1603 measurements), DNAmAge (535 individuals; 1392 measurements), cognition (823 individuals; 3218 measurements), and frailty index (FI) (1828 individuals; 9502 measurements).

View Article and Find Full Text PDF

To achieve replicative immortality, cancer cells must activate telomere maintenance mechanisms. In 10 to 15% of cancers, this is enabled by recombination-based alternative lengthening of telomeres pathways (ALT). ALT cells display several hallmarks including heterogeneous telomere length, extrachromosomal telomeric repeats, and ALT-associated PML bodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!