Tea saponins have high surface-active and biological activities and are widely used in chemicals, food, pharmaceuticals, and pesticides. Tea saponins are usually extracted using ethanol or water, but both methods have their disadvantages, including a negative impact on the environment, high energy consumption, and low purity. In this study, we explored an effective process for extracting tea saponins from tea meal using deep eutectic solvents combined with ultrasonic extraction and enzymatic techniques. The experimental results showed that a high extraction efficiency of 20.93 ± 0.48% could be achieved in 20 min using an ultrasonic power of 40% and a binary DES consisting of betaine and ethylene glycol (with a molar ratio of 1:3) at a material-liquid ratio of 1:35 and that the purity of the tea saponins after purification by a large-pore adsorption resin reached 95.94%, which was higher than that of commercially available standard tea saponin samples. In addition, the extracted tea saponins were evaluated for their antioxidant and bacteriostatic activities using chemical and biological methods; the results showed that the tea saponins extracted using these methods possessed antioxidant properties and displayed significant antibacterial activity. Therefore, the present study developed a method for using deep eutectic solvents as an environmentally friendly technological solution for obtaining high-purity tea saponins from tea meal oil. This is expected to replace the current organic solvent and water extraction process and has great potential for industrial development and a number of possible applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201205 | PMC |
http://dx.doi.org/10.3390/biology13060438 | DOI Listing |
AAPS PharmSciTech
January 2025
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
Albendazole serves as a broad-spectrum anthelmintic medication for treating hydatid cysts and neurocysticercosis. However, its therapeutic effectiveness is limited by poor solubility. Nanocrystals offer a promising technology to address this limitation by enhancing drug solubility.
View Article and Find Full Text PDFBiomed Res Int
December 2024
Department of Biochemistry & Chemistry, Sylhet Agricultural University, Sylhet, Bangladesh.
Emerging multidrug-resistant (MDR) strains are the main challenges to the progression of new drug discovery. To diminish infectious disease-causing pathogens, new antibiotics are required while the drying pipeline of potent antibiotics is adding to the severity. Plant secondary metabolites or phytochemicals including alkaloids, phenols, flavonoids, and terpenes have successfully demonstrated their inhibitory potential against the drug-resistant pathogens.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
September 2024
Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.
The activity of rare saponins is generally better than that of their prototypes. There are significant differences in the proportions and pharmacological effects of rare saponins/prototype saponins in Gynostemma pentaphyllum samples dried with different methods, which may be related to the reaction catalyzed by glucosidase. To explore the pattern of the enzymatic reaction catalyzed by glucosidase during the processing of G.
View Article and Find Full Text PDFFood Chem
December 2024
Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, Chengdu (611430), Sichuan, China. Electronic address:
In this study, novel bigel beads based on alginate hydrogel and monoglycerol oleogel were developed using tea saponin (TS) for interfacial modification. We investigated the impact of the structures of oleogel-hydrogel interface on the stability and bioactives release of bigel beads, with curcumin as the model hydrophobic bioactive. With higher TS content, the particle size and ζ-potential of the bigel emulsions was first decreased and then increased.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Department of Environmental Engineering, Faculty of Engineering, Zonguldak Bulent Ecevit University, Zonguldak 67000, Turkey.
The choice of plant species is crucial, as different plants provide unique biomolecules that influence nanoparticle characteristics. Biomolecules in plant extracts, such as proteins, amino acids, enzymes, polysaccharides, alkaloids, tannins, phenolics, saponins, terpenoids, and vitamins, act as stabilizing and reducing agents. This study explores the synthesis of silver nanoparticles (AgNPs) using leaf extracts from collard greens ( var.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!