The agricultural sector is currently encountering significant challenges due to the effects of climate change, leading to negative consequences for crop productivity and global food security. In this context, traditional agricultural practices have been inadequate in addressing the fast-evolving challenges while maintaining environmental sustainability. A possible alternative to traditional agricultural management is represented by using beneficial micro-organisms that, once applied as bioinoculants, may enhance crop resilience and adaptability, thereby mitigating the adverse effects of environmental stressors and boosting productivity. Tomato is one of the most important crops worldwide, playing a central role in the human diet. The aim of this study was to evaluate the impact of a nitrogen-fixing bacterial-based biostimulant ( sp., sp., and sp.) in combination or not with a commercial inoculum Micomix (, , , , and ) (MYC) on the native rhizosphere communities and tomato production. Bacterial populations in the different samples were characterized using an environmental metabarcoding approach. The bioinocula effect on the native rhizosphere microbiota resulted in significant variation both in alpha and beta diversity and in a specific signature associated with the presence of biostimulants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200462 | PMC |
http://dx.doi.org/10.3390/biology13060400 | DOI Listing |
Front Biosci (Elite Ed)
December 2024
Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil.
Background: Actinobacteria are major producers of antibacterial and antifungal metabolites and are growing their search for substances of biotechnological interest, especially for use in agriculture, among other applications. The Amazon is potentially rich in actinobacteria; however, almost no research studies exist. Thus, we present a study of the occurrence and antifungal potential of actinobacteria from the rhizosphere of , a native South American plant and one that is economically useful in the whole of the Amazon.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, Turin, 10125, Turin, Italy.
PeerJ
December 2024
College of Forestry and Prataculture, Ningxia University, Yinchuan, China.
Alfalfa ( L.) establishment is an effective strategy for grassland reconstruction in degraded ecosystems. However, the mechanisms underlying vegetation succession in reconstructed grasslands following alfalfa establishment remain elusive.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland.
Oilseed rape is one of the most important oilseed crops, requiring high levels of nitrogen fertilization. Excessive nitrogen use, however, leads to numerous negative environmental impacts, spurring the search for sustainable, environmentally friendly alternatives to reduce reliance on mineral nitrogen fertilizers. One promising approach involves plant-growth-promoting bacteria (PGPB), which can support oilseed rape growth and lessen the need for traditional nitrogen fertilizers.
View Article and Find Full Text PDFJ Soil Sci Plant Nutr
May 2024
Group of Isotope Biogeochemistry and Gas Fluxes, Leibniz Centre for Agricultural Landscape Research (ZALF) E.V., Müncheberg, Germany.
Aims: High Phosphorus (P) efficiencies such as internal P utilization efficiency (PUE) and P acquisition efficiency (PAE) are crucial for upland rice production, particularly on highly P-fixing soils like Andosols. While the effect of root traits associated with high PAE in upland rice has been studied intensively, less attention has been given to the origin of P (native soil-P versus fertilizer-P) taken up by plants when evaluating differences in P efficiency. Here we aim to evaluate the efficiency of different upland rice genotypes to acquire native soil-P and fertilizer-P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!