Harnessing Mitochondrial Stress for Health and Disease: Opportunities and Challenges.

Biology (Basel)

Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.

Published: May 2024

Mitochondria, essential organelles orchestrating cellular metabolism, have emerged as central players in various disease pathologies. Recent research has shed light on mitohormesis, a concept proposing an adaptive response of mitochondria to minor disturbances in homeostasis, offering novel therapeutic avenues for mitochondria-related diseases. This comprehensive review explores the concept of mitohormesis, elucidating its induction mechanisms and occurrence. Intracellular molecules like reactive oxygen species (ROS), calcium, mitochondrial unfolded proteins (UPRmt), and integrated stress response (ISR), along with external factors such as hydrogen sulfide (HS), physical stimuli, and exercise, play pivotal roles in regulating mitohormesis. Based on the available evidence, we elucidate how mitohormesis maintains mitochondrial homeostasis through mechanisms like mitochondrial quality control and mitophagy. Furthermore, the regulatory role of mitohormesis in mitochondria-related diseases is discussed. By envisioning future applications, this review underscores the significance of mitohormesis as a potential therapeutic target, paving the way for innovative interventions in disease management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200414PMC
http://dx.doi.org/10.3390/biology13060394DOI Listing

Publication Analysis

Top Keywords

mitochondria-related diseases
8
mitohormesis
6
harnessing mitochondrial
4
mitochondrial stress
4
stress health
4
health disease
4
disease opportunities
4
opportunities challenges
4
challenges mitochondria
4
mitochondria essential
4

Similar Publications

An integrated investigation of mitochondrial genes in COPD reveals the causal effect of NDUFS2 by regulating pulmonary macrophages.

Biol Direct

January 2025

Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.

Background: Despite the increasing body of evidence that mitochondrial activities implicate in chronic obstructive pulmonary disease (COPD), we are still far from a causal-logical and mechanistic understanding of the mitochondrial malfunctions in COPD pathogenesis.

Results: Differential expression genes (DEGs) from six publicly available bulk human lung tissue transcriptomic datasets of COPD patients were intersected with the known mitochondria-related genes from MitoCarta3.0 to obtain mitochondria-related DEGs associated with COPD (MitoDEGs).

View Article and Find Full Text PDF

Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents.

View Article and Find Full Text PDF

Osteoporosis (OP) is a prevalent age-related bone metabolic disease. Aging and mitochondrial dysfunction are involved in the onset and progression of OP, but the specific mechanisms have not been elucidated. The aim of this study was to identify novel potential biomarkers associated with aging and mitochondria in OP.

View Article and Find Full Text PDF

Unlabelled:

Introduction: Alzheimer's disease (AD) represents the most common neurodegenerative disorder, characterized by progressive cognitive decline and memory loss. Despite the recognition of mitochondrial dysfunction as a critical factor in the pathogenesis of AD, the specific molecular mechanisms remain largely undefined.

Method: This study aimed to identify novel biomarkers and therapeutic strategies associated with mitochondrial dysfunction in AD by employing bioinformatics combined with machine learning methodologies.

View Article and Find Full Text PDF
Article Synopsis
  • Myocardial ischemia/reperfusion injury (MIRI) is a major complication after myocardial infarction, and the role of mitochondria-related genes in this process is not well understood.
  • Researchers utilized specific datasets (GSE67308 and GSE61592) to identify genes associated with MIRI and found glycine decarboxylase (Gldc) to be significantly elevated in MIRI models.
  • Experiments showed that reducing Gldc levels improved cell survival and reduced inflammation during hypoxia/reperfusion injury, indicating its potential as a diagnostic and therapeutic target for MIRI.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!