Effects of Temporal Processing on Speech-in-Noise Perception in Middle-Aged Adults.

Biology (Basel)

Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA.

Published: May 2024

Auditory temporal processing is a vital component of auditory stream segregation, or the process in which complex sounds are separated and organized into perceptually meaningful objects. Temporal processing can degrade prior to hearing loss, and is suggested to be a contributing factor to difficulties with speech-in-noise perception in normal-hearing listeners. The current study tested this hypothesis in middle-aged adults-an under-investigated cohort, despite being the age group where speech-in-noise difficulties are first reported. In 76 participants, three mechanisms of temporal processing were measured: peripheral auditory nerve function using electrocochleography, subcortical encoding of periodic speech cues (i.e., fundamental frequency; F0) using the frequency following response, and binaural sensitivity to temporal fine structure (TFS) using a dichotic frequency modulation detection task. Two measures of speech-in-noise perception were administered to explore how contributions of temporal processing may be mediated by different sensory demands present in the speech perception task. This study supported the hypothesis that temporal coding deficits contribute to speech-in-noise difficulties in middle-aged listeners. Poorer speech-in-noise perception was associated with weaker subcortical F0 encoding and binaural TFS sensitivity, but in different contexts, highlighting that diverse aspects of temporal processing are differentially utilized based on speech-in-noise task characteristics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11200514PMC
http://dx.doi.org/10.3390/biology13060371DOI Listing

Publication Analysis

Top Keywords

temporal processing
24
speech-in-noise perception
16
speech-in-noise difficulties
8
subcortical encoding
8
speech-in-noise
7
temporal
7
processing
6
perception
5
effects temporal
4
processing speech-in-noise
4

Similar Publications

Using a pediatric-focused lens, this review article briefly summarizes the presentation of several demyelinating and neuroinflammatory diseases using conventional magnetic resonance imaging (MRI) sequences, such as T1-weighted with and without an exogenous gadolinium-based contrast agent, T2-weighted, and fluid-attenuated inversion recovery (FLAIR). These conventional sequences exploit the intrinsic properties of tissue to provide a distinct signal contrast that is useful for evaluating disease features and monitoring treatment responses in patients by characterizing lesion involvement in the central nervous system and tracking temporal features with blood-brain barrier disruption. Illustrative examples are presented for pediatric-onset multiple sclerosis and neuroinflammatory diseases.

View Article and Find Full Text PDF

Background: Although it has been noticed that depressed patients show differences in processing emotions, the precise neural modulation mechanisms of positive and negative emotions remain elusive. FMRI is a cutting-edge medical imaging technology renowned for its high spatial resolution and dynamic temporal information, making it particularly suitable for the neural dynamics of depression research.

Methods: To address this gap, our study firstly leveraged fMRI to delineate activated regions associated with positive and negative emotions in healthy individuals, resulting in the creation of the positive emotion atlas (PEA) and the negative emotion atlas (NEA).

View Article and Find Full Text PDF

At the cortical level, the central auditory neural system (CANS) includes primary and secondary areas. So far, much research has focused on recording fronto-central auditory evoked potentials/responses (P1-N1-P2), originating mainly from the primary auditory areas, to explore the neural processing in the auditory cortex. However, less is known about the secondary auditory areas.

View Article and Find Full Text PDF

This study aimed to assess the immediate effects of transcutaneous spinal direct current stimulation (tsDCS) on pain outcomes, measured using the visual analog scale (VAS) and pressure pain thresholds in a cohort of 55 participants experiencing chronic pain using a controlled, randomized trial with 55 participants allocated into 2 groups: 2 mA and 0.5 mA of tsDCS for 20 min. Anodal stimulation was applied on the 12th thoracic vertebra, with the cathode positioned on the 7th cervical vertebra.

View Article and Find Full Text PDF

DAT: Deep Learning-Based Acceleration-Aware Trajectory Forecasting.

J Imaging

December 2024

School of Innovation, Design and Technology (IDT), Mälardalen University, 72123 Västerås, Sweden.

As the demand for autonomous driving (AD) systems has increased, the enhancement of their safety has become critically important. A fundamental capability of AD systems is object detection and trajectory forecasting of vehicles and pedestrians around the ego-vehicle, which is essential for preventing potential collisions. This study introduces the Deep learning-based Acceleration-aware Trajectory forecasting (DAT) model, a deep learning-based approach for object detection and trajectory forecasting, utilizing raw sensor measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!