Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
At the end of 2023, the Whole Mouse Brain Atlas was announced, revealing that there are about 5300 molecularly defined neuronal types in the mouse brain. We ask whether brain models exist that contemplate how this is possible. The conventional columnar model, implicitly used by the authors of the Atlas, is incapable of doing so with only 20 brain columns (5 brain vesicles with 4 columns each). We argue that the definition of some 1250 distinct progenitor microzones, each producing at least 4-5 neuronal types over time, may be sufficient. Presently, this is nearly achieved by the prosomeric model amplified by the secondary dorsoventral and anteroposterior microzonation of progenitor areas, plus the clonal variation in cell types produced, on average, by each of them.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11202034 | PMC |
http://dx.doi.org/10.3390/biom14060708 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!