Immunofluorescence with antibodies against phosphorylated forms of H2AX (γH2AX) is revolutionizing our understanding of repair and signaling of DNA double-strand breaks (DSBs). Unfortunately, the pattern of γH2AX foci depends upon a number of parameters (nature of stress, number of foci, radiation dose, repair time, cell cycle phase, gene mutations, etc…) whose one of the common points is chromatin condensation/decondensation. Here, we endeavored to demonstrate how chromatin conformation affects γH2AX foci pattern and influences immunofluorescence signal. DSBs induced in non-transformed human fibroblasts were analyzed by γH2AX immunofluorescence with sodium butyrate treatment of chromatin applied after the irradiation that decondenses chromatin but does not induce DNA breaks. Our data showed that the pattern of γH2AX foci may drastically change with the experimental protocols in terms of size and brightness. Notably, some γH2AX minifoci resulting from the dispersion of the main signal due to chromatin decondensation may bias the quantification of the number of DSBs. We proposed a model called "Christmas light models" to tentatively explain this diversity of γH2AX foci pattern that may also be considered for any DNA damage marker that relocalizes as nuclear foci.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201768 | PMC |
http://dx.doi.org/10.3390/biom14060703 | DOI Listing |
Endocrine
January 2025
Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.
Purpose: To evaluate the diagnostic value of different subtypes of non-punctate echogenic foci in thyroid malignancy.
Methods: Retrospective research of 342 thyroid nodules with calcification was performed. The echogenic foci were divided into punctate echogenic foci (type I) and non-punctate echogenic foci (type II), and type II were further divided into four subtypes: macrocalcification (type IIa), continuous peripheral calcification (type IIb), discontinuous peripheral calcification (type IIc) and isolated calcification (type IId).
Nucleic Acids Res
January 2025
MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.
Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Mines Saint-Etienne, Centre CMP, Département BEL, F-13541 Gardanne, France.
The primary method of treatment for patients suffering from drug-resistant focal-onset epilepsy is resective surgery, which adversely impacts neurocognitive function. Radio frequency (RF) ablation and laser ablation are the methods with the most promise, achieving seizure-free rates similar to resection but with less negative impact on neurocognitive function. However, there remains a number of concerns and open technical questions about these two methods of thermal ablation, with the primary ones: (1) heating; (2) hemorrhage and bleeding; and (3) poor directionality.
View Article and Find Full Text PDFJ Virol
January 2025
Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Measles virus (MeV) is a highly contagious respiratory virus transmitted via aerosols. To understand how MeV exits the airways of an infected host, we use unpassaged primary cultures of human airway epithelial cells (HAE). MeV typically remains cell-associated in HAE and forms foci of infection, termed infectious centers, by directly spreading cell-to-cell.
View Article and Find Full Text PDFIndian J Nucl Med
November 2024
Department of Diagnostic Radiology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
Conventional imaging techniques, while essential, occasionally fall short in identifying elusive metastatic lesions, leading to delayed diagnoses and compromised patient outcomes. Gallium-68 fibroblast activating protein inhibitor (Ga-FAPI) positron emission tomography/computed tomography (PET/CT), leveraging the distinct affinity of fibroblast activation protein for cancer-associated fibroblasts, emerges as a promising solution to bridge this diagnostic gap. Parotid gland adenocarcinoma is a relatively rare malignancy with metastasis typically occurring in regional lymph nodes and distant sites such as the lungs and bones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!