Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accurate identification of spatial domains is essential in the analysis of spatial transcriptomics data in order to elucidate tissue microenvironments and biological functions. However, existing methods only perform domain segmentation based on local or global spatial relationships between spots, resulting in an underutilization of spatial information. To this end, we propose SECE, a deep learning-based method that captures both local and global relationships among spots and aggregates their information using expression similarity and spatial similarity. We benchmarked SECE against eight state-of-the-art methods on six real spatial transcriptomics datasets spanning four different platforms. SECE consistently outperformed other methods in spatial domain identification accuracy. Moreover, SECE produced spatial embeddings that exhibited clearer patterns in low-dimensional visualizations and facilitated a more accurate trajectory inference.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201407 | PMC |
http://dx.doi.org/10.3390/biom14060674 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!