Molecular Mechanisms of the Impaired Heparin Pentasaccharide Interactions in 10 Antithrombin Heparin Binding Site Mutants Revealed by Enhanced Sampling Molecular Dynamics.

Biomolecules

Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.

Published: June 2024

Antithrombin (AT) is a critical regulator of the coagulation cascade by inhibiting multiple coagulation factors including thrombin and FXa. Binding of heparinoids to this serpin enhances the inhibition considerably. Mutations located in the heparin binding site of AT result in thrombophilia in affected individuals. Our aim was to study 10 antithrombin mutations known to affect their heparin binding in a heparin pentasaccharide bound state using two molecular dynamics (MD) based methods providing enhanced sampling, GaMD and LiGaMD2. The latter provides an additional boost to the ligand and the most important binding site residues. From our GaMD simulations we were able to identify four variants (three affecting amino acid Arg47 and one affecting Lys114) that have a particularly large effect on binding. The additional acceleration provided by LiGaMD2 allowed us to study the consequences of several other mutants including those affecting Arg13 and Arg129. We were able to identify several conformational types by cluster analysis. Analysis of the simulation trajectories revealed the causes of the impaired pentasaccharide binding including pentasaccharide subunit conformational changes and altered allosteric pathways in the AT protein. Our results provide insights into the effects of AT mutations interfering with heparin binding at an atomic level and can facilitate the design or interpretation of in vitro experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201378PMC
http://dx.doi.org/10.3390/biom14060657DOI Listing

Publication Analysis

Top Keywords

heparin binding
16
binding site
12
heparin pentasaccharide
8
binding
8
enhanced sampling
8
molecular dynamics
8
heparin
6
molecular mechanisms
4
mechanisms impaired
4
impaired heparin
4

Similar Publications

In silico design of multi-epitope vaccine candidate based on structural proteins of porcine reproductive and respiratory syndrome virus.

Vet Immunol Immunopathol

January 2025

Virology and Vaccine Research Program, Industrial Technology Development Institute, Department of Science and Technology, Bicutan, Taguig 1634, Philippines; Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines; S&T Fellows Program, Department of Science and Technology, Bicutan, Taguig 1634, Philippines. Electronic address:

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most common respiratory disease-causing viral agents. Swine infected with PRRSV exhibit severe respiratory symptoms and reproductive failure, leading to significant economic losses. To address this issue, inactivated and live-attenuated vaccines have been developed.

View Article and Find Full Text PDF

Glycosaminoglycans (GAGs) play a pivotal role in pathogen attachment and entry into host cells, where the interaction with GAGs is critical for a diverse range of bacteria and viruses. This study focuses on elucidating the specific interactions between sulfated GAGs and the adhesin OmcB (Outer membrane complex protein B) of Chlamydia species, examining how structural characteristics of GAGs, such as sulfation degree and molecular weight, influence their binding affinity and thereby affect bacterial infectivity. A surface-based binding assay is established to determine the binding constants of OmcB with various GAGs.

View Article and Find Full Text PDF

Proteomic Identification and Functional Analysis of Reveals Heparin-Binding Proteins.

J Trop Med

January 2025

National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Laboratory of Parasite and Vector Biology, Ministry of Public Health, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China.

Glycosaminoglycan (GAG) molecules on the surface of red blood cells play an important regulatory role in the invasion of merozoites of apicomplexan protozoa. Heparan sulfate, a type of GAG molecule, has been identified as an important receptor facilitating the invasion of red blood cells by these parasites. Proteins in the parasite that exhibit strong affinity for heparin may play a pivotal role in this invasion process.

View Article and Find Full Text PDF

Efficient and safe carriers of genetic material are crucial for advancing gene therapy. Three new series of cationic dendritic nanocarriers based on a carbosilane scaffold, differentiated by peripheral modifications: saccharide (CS-glyco), amine (CS-N), and phosphonium dendrimers (CS-P) were designed for binding, protecting, and releasing polyanionic compounds like therapeutic siRNA. Besides introducing synthetic methodology, this study brings a unique direct interstructural comparison of 16 dendritic nanovector's characteristics, addressing a gap in typical research that focuses on uniform structural types.

View Article and Find Full Text PDF

Protamine protects against vancomycin-induced kidney injury.

Antimicrob Agents Chemother

January 2025

Department of Pharmacy Practice, College of Pharmacy, Midwestern University, Downers Grove, Illinois, USA.

Vancomycin causes kidney injury by accumulating in the proximal tubule, likely mediated by megalin uptake. Protamine is a putative megalin inhibitor that shares binding sites with heparin and is approved for the treatment of heparin overdose. We employed a well-characterized Sprague-Dawley rat model to assess kidney injury and function in animals that received vancomycin, protamine alone, or vancomycin plus protamine over 5 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!