Background: Anisodus tanguticus (Maxim.) Pascher (A. tanguticus) is a valuable botanical for extracting tropane alkaloids, which are widely used in the pharmaceutical industry. Implementing appropriate cultivation methods can improve both the quality and yield of A. tanguticus. A two-year field experiment was conducted from 2021 to 2023 using a single-factor randomized complete block design replicated three times. The study examined the effects of different nutrient levels (nitrogen: 0, 75, 150, 225, 300, 375 kg/ha; phosphorus: 0, 600, 750, 900, 1050, 1200 kg/ha; potassium: 0, 75, 112.5, 150, 187.5, 225 kg/ha) on the growth, primary alkaloid contents, and alkaloid yield of A. tanguticus at different growth stages (S-Greening, S-Growing, S-Wilting; T-Greening, T-Growing, and T-Wilting) in both the roots and aboveground portions.

Results: Our results demonstrate that nutrient levels significantly affect the growth and alkaloid accumulation in A. tanguticus. High nitrogen levels (375 kg/ha) notably increased both root and aboveground biomass, while phosphorus had a minimal effect, especially on aboveground biomass. For alkaloid content (scopolamine, anisodamine, anisodine, atropine), a moderate nitrogen level (225 kg/ha) was most effective, followed by low potassium (75 kg/ha), with phosphorus showing a limited impact. Increased phosphorus levels led to a decrease in scopolamine content. During the T-Growing period, moderate nitrogen addition (225 kg/ha) yielded the highest alkaloid levels per unit area (205.79 kg/ha). In the T-Wilting period, low potassium (75 kg/ha) and low phosphorus (750 kg/ha) resulted in alkaloid levels of 146.91 kg/ha and 142.18 kg/ha, respectively. This indicates nitrogen has the most substantial effect on alkaloid accumulation, followed by potassium and phosphorus. The Douglas production function analysis suggests focusing on root biomass and the accumulation of scopolamine and atropine in roots to maximize alkaloid yield in A. tanguticus cultivation.

Conclusions: Our findings show that the optimum harvesting period for A. tanguticus is the T-Wilting period, and that the optimal nitrogen addition is 225 kg/ha, the optimal potassium addition is 75 kg/ha, and the optimal phosphorus addition is 600 kg/ha or less.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201296PMC
http://dx.doi.org/10.1186/s12870-024-05299-8DOI Listing

Publication Analysis

Top Keywords

alkaloid yield
12
yield tanguticus
12
alkaloid
9
tanguticus
8
anisodus tanguticus
8
tanguticus maxim
8
maxim pascher
8
nutrient levels
8
alkaloid accumulation
8
aboveground biomass
8

Similar Publications

The absolute and relative configurations of bioactive chiral molecules are typically relevant to their biological properties. It is thus highly important and desirable to construct all possible stereoisomers of a lead candidate or a given bioactive natural compound. Synergistic dual catalysis has been recognized as a reliable synthetic strategy for a variety of predictable stereodivergent transformations.

View Article and Find Full Text PDF

Selenium is a beneficial element in agriculture, particularly for its potential to improve plant growth and stress tolerance at suitable concentrations. In this study, Phaseolus vulgaris was foliar-sprayed with selenium selenate (Se) or selenium nanoparticles (SeNP) at different concentrations during the vegetative stage; afterward, the seed yield was analyzed for metabolomics using H, J-resolved and HSQC NMR data, and NMR databases. A total of 47 metabolites were identified with sugars being the major chemical class.

View Article and Find Full Text PDF

Unexpected amine-triggered skeletal modification of fascaplysin and its derivatives: rapid access to δ,γ-biscarbolines.

Org Biomol Chem

January 2025

State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang 550014, China.

An unsuccessful attempt to directly construct alkaloid iheyamine A from a fascaplysin framework resulted in the discovery of a novel synthetic approach to alkylated δ,γ-biscarboline derivatives. With the easy-to-operate reaction conditions of this protocol, 18 alkylated biscarbolines have been prepared in moderate to good yields. An unexpected domino transformation was proposed to involve a pyridinium ring-opening/aza-electrocyclization/oxidative deformylation sequence.

View Article and Find Full Text PDF

Synthetic antidiabetic drugs are often associated with various adverse side effects, including hypoglycemia, nausea, gastrointestinal disturbances, headaches, and even liver damage. In contrast, plant-derived natural antidiabetic bioactive compounds typically exhibit lower toxicity and fewer side effects and have been reported to aid effectively in diabetes management. These plant extracts regulate diabetes by restoring pancreatic function, enhancing insulin secretion, inhibiting intestinal glucose absorption, and facilitating insulin dependent metabolism.

View Article and Find Full Text PDF

A method for preparing the fused cyclohexane and pyrrolidine portion of the strychnos skeleton has been developed using domino intermolecular and intramolecular S2 cyclization. Using this method, the formation of pyrrolidine proceeded smoothly with good yield without the E2 elimination product. This reaction condition is effective for synthesizing the fused cyclohexane and pyrrolidine portion of the strychnos skeleton.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!