Background: Term and late preterm infants are not routinely referred to high-risk infant follow-up programs at neonatal intensive care unit (NICU) discharge. We aimed to identify NICU factors associated with abnormal developmental screening and develop a risk-stratification model using machine learning for high-risk infant follow-up enrollment.
Methods: We performed a retrospective cohort study identifying abnormal developmental screening prior to 6 years of age in infants born ≥34 weeks gestation admitted to a level IV NICU. Five machine learning models using NICU predictors were developed by classification and regression tree (CART), random forest, gradient boosting TreeNet, multivariate adaptive regression splines (MARS), and regularized logistic regression analysis. Performance metrics included sensitivity, specificity, accuracy, precision, and area under the receiver operating curve (AUC).
Results: Within this cohort, 87% (1183/1355) received developmental screening, and 47% had abnormal results. Common NICU predictors across all models were oral (PO) feeding, follow-up appointments, and medications prescribed at NICU discharge. Each model resulted in an AUC > 0.7, specificity >70%, and sensitivity >60%.
Conclusion: Stratification of developmental risk in term and late preterm infants is possible utilizing machine learning. Applying machine learning algorithms allows for targeted expansion of high-risk infant follow-up criteria.
Impact: This study addresses the gap in knowledge of developmental outcomes of infants ≥34 weeks gestation requiring neonatal intensive care. Machine learning methodology can be used to stratify early childhood developmental risk for these term and late preterm infants. Applying the classification and regression tree (CART) algorithm described in the study allows for targeted expansion of high-risk infant follow-up enrollment to include those term and late preterm infants who may benefit most.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11669732 | PMC |
http://dx.doi.org/10.1038/s41390-024-03338-6 | DOI Listing |
Clin Oral Implants Res
January 2025
Department of Oral and Maxillofacial Radiology, School of Dentistry, Kashan University of Medical Sciences, Kashan, Iran.
Objective: This study evaluated ResNet-50 and U-Net models for detecting and segmenting vertical misfit in dental implant crowns using periapical radiographic images.
Methods: Periapical radiographs of dental implant crowns were classified by two experts based on the presence of vertical misfit (reference group). The misfit area was manually annotated in images exhibiting vertical misfit.
Sci Prog
January 2025
Department of Industrial Engineering, UiT-The Arctic University of Norway, Narvik, Norway.
Background: Retail involves directly delivering goods and services to end consumers. Natural disasters and epidemics/pandemics have significant potential to disrupt supply chains, leading to shortages, forecasting errors, price increases, and substantial financial strains on retailers. The COVID-19 pandemic highlighted the need for retail sectors to prepare for crisis impacts on sales forecasts by regularly assessing and adjusting sales volumes, consumer behavior, and forecasting models to adapt to changing conditions.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.
Terrestrial vegetation is a key component of the Earth system, regulating the exchange of carbon, water, and energy between land and atmosphere. Vegetation affects soil moisture dynamics by absorbing and transpiring soil water, thus modulating land-atmosphere interactions. Moreover, changes in vegetation structure (e.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
The department of oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
Non-small cell lung cancer (NSCLC) frequently metastasizes to the brain, significantly worsened prognoses. This study aimed to develop an interpretable model for predicting survival in NSCLC patients with brain metastases (BM) integrating radiomic features and RNA sequencing data. 292 samples are collected and analyzed utilizing T1/T2 MRIs.
View Article and Find Full Text PDFData Brief
February 2025
Department of Computer Science and Engineering, East West University, Aftabnagar, Dhaka, Bangladesh.
In the field of agriculture, particularly within the context of machine learning applications, quality datasets are essential for advancing research and development. To address the challenges of identifying different mango leaf types and recognizing the diverse and unique characteristics of mango varieties in Bangladesh, a comprehensive and publicly accessible dataset titled "BDMANGO" has been created. This dataset includes images essential for research, featuring six mango varieties: Amrapali, Banana, Chaunsa, Fazli, Haribhanga, and Himsagar, which were collected from different locations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!