Major depressive disorder (MDD) and substance-use disorders (SUDs) often lead to premature aging, increasing vulnerability to cognitive decline and other forms of dementia. This study utilized advanced systems bioinformatics to identify aging "signatures" in MDD and SUDs and evaluated the potential for known lifespan-extending drugs to target and reverse these signatures. The results suggest that inhibiting the transcriptional activation of FOS gene family members holds promise in mitigating premature aging in MDD and SUDs. Conversely, antidepressant drugs activating the PI3K/Akt/mTOR pathway, a common mechanism in rapid-acting antidepressants, may accelerate aging in MDD patients, making them unsuitable for those with comorbid aging-related conditions like dementia and Alzheimer's disease. Additionally, this innovative approach identifies potential anti-aging interventions for MDD patients, such as Deferoxamine, Resveratrol, Estradiol valerate, and natural compounds like zinc acetate, genistein, and ascorbic acid, regardless of comorbid anxiety disorders. These findings illuminate the premature aging effects of MDD and SUDs and offer insights into treatment strategies for patients with comorbid aging-related conditions, including dementia and Alzheimer's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208564PMC
http://dx.doi.org/10.1038/s41597-024-03538-zDOI Listing

Publication Analysis

Top Keywords

premature aging
16
mdd suds
12
aging mdd
8
mdd patients
8
comorbid aging-related
8
aging-related conditions
8
dementia alzheimer's
8
alzheimer's disease
8
aging
6
mdd
6

Similar Publications

Aging is the major risk factor for most human diseases and represents a major socio-economical challenge for modern societies. Despite its importance, the process of aging remains poorly understood. Epigenetic dysregulation has been proposed as a key driver of the aging process.

View Article and Find Full Text PDF

Recent research shows a significant link between race-ethnicity and income concentration and premature death rates in the U.S. However, most studies focus on Black-White residential concentration, overlooking racial-ethnic diversity.

View Article and Find Full Text PDF

Physiological premature aging of ovarian blood vessels leads to decline in fertility in middle-aged mice.

Nat Commun

January 2025

State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.

Ovarian function declines significantly as females enter middle-age, but the mechanisms underlying this decline remain unclear. Here, we utilize whole-organ imaging to observe a notable decrease in ovarian blood vessel (oBV) density and angiogenesis intensity of middle-aged mice. This leads to a diminished blood supply to the ovaries, resulting in inadequate development and maturation of ovarian follicles.

View Article and Find Full Text PDF

Quantifying the mechanical response of the biological milieu (such as the cell's interior) and complex fluids (such as biomolecular condensates) would enable a better understanding of cellular differentiation and aging and accelerate drug discovery. Here we present time-shared optical tweezer microrheology to determine the frequency- and age-dependent viscoelastic properties of biological materials. Our approach involves splitting a single laser beam into two near-instantaneous time-shared optical traps to carry out simultaneous force and displacement measurements and quantify the mechanical properties ranging from millipascals to kilopascals across five decades of frequency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!