The aim of this study is to introduce a dental capping agent for the treatment of pulp inflammation (pulpitis). Nanohydroxyapatite with Elaeagnus angustifolia L. extract (nHAEA) loaded with metronidazole (nHAEA@MTZ) was synthesized and evaluated using a lipopolysaccharide (LPS) in vitro model of pulpitis. nHAEA was synthesized through sol-gel method and analyzed using Scanning Electron Microscopy, Transmission Electron Microscopy, and Brunauer Emmett Teller. Inflammation in human dental pulp stem cells (HDPSCs) induced by LPS. A scratch test assessed cell migration, RT PCR measured cytokines levels, and Alizarin red staining quantified odontogenesis. The nHAEA nanorods were 17-23 nm wide and 93-146 nm length, with an average pore diameter of 27/312 nm, and a surface area of 210.89 m/g. MTZ loading content with controlled release, suggesting suitability for therapeutic applications. nHAEA@MTZ did not affect the odontogenic abilities of HDPSCs more than nHAEA. However, it was observed that nHAEA@MTZ demonstrated a more pronounced anti-inflammatory effect. HDPSCs treated with nanoparticles exhibited improved migration compared to other groups. These findings demonstrated that nHAEA@MTZ could be an effective material for pulp capping and may be more effective than nHAEA in reducing inflammation and activating HDPSCs to enhance pulp repair after pulp damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208562 | PMC |
http://dx.doi.org/10.1038/s41598-024-65582-4 | DOI Listing |
Sci Rep
June 2024
Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran.
The aim of this study is to introduce a dental capping agent for the treatment of pulp inflammation (pulpitis). Nanohydroxyapatite with Elaeagnus angustifolia L. extract (nHAEA) loaded with metronidazole (nHAEA@MTZ) was synthesized and evaluated using a lipopolysaccharide (LPS) in vitro model of pulpitis.
View Article and Find Full Text PDFBMC Complement Med Ther
September 2023
Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran.
Background: One of the most common types of cancer in women is breast cancer. There are numerous natural plant-based products, which exert anti-tumoral effects including Elaeagnus Angustifolia (EA). It modulates cell-cycle process, heat-shock proteins expression, anti-proliferative properties, apoptosis induction, blocking of angiogenesis, and cell invasion inhibition.
View Article and Find Full Text PDFBMC Oral Health
November 2022
Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran.
Purpose: The green synthesis of nanoparticles has recently opened up a new route in material production. The aim of this study was to evaluate the effect of nanohydroxyapatite (nHA) synthesized from Elaeagnus angustifolia (EA) extract in polycaprolactone (PCL) nanofibers (PCL/nHAEA) to odontogenic differentiation of dental pulp stem cells (DPSCs) and their potential applications for dentin tissue engineering.
Methods: Green synthesis of nHA via EA extract (nHAEA) was done by the sol-gel technique.
Odontology
April 2023
Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran.
Dental pulp stem cells (DPSCs) are a new type of mesenchymal stem cells (MSCs) found in the oral cavity with immunomodulation and tissue regeneration capacities. This study determined the impacts of nano-hydroxyapatite (nHA) prepared through Elaeagnus Angustifolia extract (EAE) to enhance the relative expression of immunomodulatory/dentin-pulp regeneration genes in DPSCs. To produce nHA and modified nHA via EAE (nHAEA), the sol-gel technique was used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!