Olefin carbofunctionalization reactions are indispensable tools for constructing diverse, functionalized scaffolds from simple starting materials. However, achieving precise control over regioselectivity in intermolecular reactions remains a formidable challenge. Here, we demonstrate that using PAdBu as a ligand enables regioselective heteroannulation of o-bromoanilines with branched 1,3-dienes through ligand control. This approach provides regiodivergent access to 3-substituted indolines, showcasing excellent regioselectivity and reactivity across a range of functionalized substrates. To gain further insights into the origin of selectivity control, we employ a data-driven strategy, developing a linear regression model using calculated parameters for phosphorus ligands. This model identifies four key parameters governing regioselectivity in this transformation, paving the way for future methodology development. Additionally, density functional theory calculations elucidate key selectivity-determining transition structures along the reaction pathway, corroborating our experimental observations and establishing a solid foundation for future advancements in regioselective olefin difunctionalization reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208576PMC
http://dx.doi.org/10.1038/s41467-024-49803-yDOI Listing

Publication Analysis

Top Keywords

ligand control
8
control regioselectivity
8
regioselectivity
4
regioselectivity palladium-catalyzed
4
palladium-catalyzed heteroannulation
4
reactions
4
heteroannulation reactions
4
reactions 13-dienes
4
13-dienes olefin
4
olefin carbofunctionalization
4

Similar Publications

Palmitate potentiates the SMAD3-PAI-1 pathway by reducing nuclear GDF15 levels.

Cell Mol Life Sci

January 2025

Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Unitat de Farmacologia, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.

Nuclear growth differentiation factor 15 (GDF15) reduces the binding of the mothers' against decapentaplegic homolog (SMAD) complex to its DNA-binding elements. However, the stimuli that control this process are unknown. Here, we examined whether saturated fatty acids (FA), particularly palmitate, regulate nuclear GDF15 levels and the activation of the SMAD3 pathway in human skeletal myotubes and mouse skeletal muscle, where most insulin-stimulated glucose use occurs in the whole organism.

View Article and Find Full Text PDF

Objectives: To investigate the expression of soluble factor-related apoptosis ligand (sFasL) in peripheral blood and microRNA-147b (miR-147b) in monocytes in children with sepsis and their value in assessing prognosis.

Methods: A prospective study was conducted on 124 children with sepsis (sepsis group), 60 children with common infections (infection group), and 60 healthy children undergoing physical examinations (healthy control group). The independent risk factors for poor prognosis in children with sepsis were analyzed, and the value of serum sFasL and monocyte miR-147b in predicting poor prognosis in children with sepsis was assessed.

View Article and Find Full Text PDF

Resistance to endocrine therapies remains a major clinical hurdle in breast cancer. Mutations to estrogen receptor alpha (ERα) arise after continued therapeutic pressure. Next generation selective estrogen receptor modulators and degraders/downregulators (SERMs and SERDs) show clinical efficacy, but responses are often non-durable.

View Article and Find Full Text PDF

Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.

View Article and Find Full Text PDF

Enhanced sampling of protein conformational changes via true reaction coordinates from energy relaxation.

Nat Commun

January 2025

Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill Department of Biomedical Engineering, The University of Illinois Chicago, 851 South Morgan Street, Chicago, IL, 60607, USA.

The bottleneck in enhanced sampling lies in finding collective variables that effectively accelerate protein conformational changes; true reaction coordinates that accurately predict the committor are the well-recognized optimal choice. However, identifying them requires unbiased natural reactive trajectories, which, paradoxically, require effective enhanced sampling. Using the generalized work functional method, we uncover that true reaction coordinates control both conformational changes and energy relaxation, enabling us to compute them from energy relaxation simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!