Pseudomonas aeruginosa is one of the most important nosocomial pathogens that possess the ability to produce multiple antibiotic resistance and virulence factors. Elastase B (LasB) is the major factor implicated in tissue invasion and damage during P. aeruginosa infections, whose synthesis is regulated by the quorum sensing (QS) system. Anti-virulence approach is now considered as potential therapeutic alternative and/or adjuvant to current antibiotics' failure. The aim of this study is primarily to find out the impact of the efflux pump inhibitor (EPI) phenylalanine arginyl β-naphthylamide (PAβN) on the production of elastase B and the gene expression of lasI quorum sensing and lasB virulence factor in clinical isolates of P. aeruginosa. Five P. aeruginosa isolates recovered from patients with respiratory tract infections were examined in this study. Antimicrobial susceptibility of isolates was performed by the disk agar diffusion method. Effect of the PAβN on imipenem susceptibility, bacterial viability, and elastase production was evaluated. The expression of lasB and lasI genes was measured by quantitative real-time PCR in the presence of PAβN. All isolates were identified as multidrug-resistant (MDR) and showed resistance to carbapenem (MIC = 64-256 µg/mL). Susceptibility of isolates to imipenem was highly increased in the presence of efflux inhibitor. PAβN significantly reduced elastase activity in three isolates tested without affecting bacterial growth. In addition, the relative expression of both lasB and lasI genes was diminished in all isolates in the presence of inhibitor. Efflux inhibition by using the EPI PAβN could be a potential target for controlling the P. aeruginosa virulence and pathogenesis. Furthermore, impairment of drug efflux by PAβN indicates its capability to be used as antimicrobial adjuvant that can decrease the resistance and lower the effective doses of current drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11405361PMC
http://dx.doi.org/10.1007/s42770-024-01426-7DOI Listing

Publication Analysis

Top Keywords

quorum sensing
12
phenylalanine arginyl
8
arginyl β-naphthylamide
8
elastase production
8
virulence factor
8
pseudomonas aeruginosa
8
isolates
8
clinical isolates
8
susceptibility isolates
8
expression lasb
8

Similar Publications

Quorum quenching nanoparticles against wound pathogens - A scoping review.

Med J Malaysia

January 2025

Nanobiomedicine lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Introduction: Quorum sensing (QS) enables bacteria to coordinate colony-wide activities, including those associated with infections. Quorum quenching (QQ) inhibits QS and is a promising method for controlling bacterial infections. Several In vitro experiments have been conducted to identify nanoparticles (NPs) as potential quorum quenching inhibitors.

View Article and Find Full Text PDF

Drug in Drug: Quorum Sensing Inhibitor in Star-Shaped Antibacterial Polypeptides for Inhibiting and Eradicating Corneal Bacterial Biofilms.

ACS Nano

January 2025

Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China.

Biofilm-related bacterial keratitis is a severe ocular infection that can result in drastic vision impairment and even blindness. However, the therapeutic efficiency of clinical antibiotic eyedrops is often compromised because the bacteria in the biofilms resist bactericide the community genetic regulation, namely, bacterial quorum sensing. Herein, quercetin (QCT)-loaded star-shaped antibacterial peptide polymer (SAPP), QCT@SAPP, is developed based on a "drug" in a "drug" strategy for inhibiting and eradicating biofilms on the cornea.

View Article and Find Full Text PDF

Genome Insights into Beneficial Microbial Strains Composing SIMBA Microbial Consortia Applied as Biofertilizers for Maize, Wheat and Tomato.

Microorganisms

December 2024

Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, 00123 Rome, RM, Italy.

For the safe use of microbiome-based solutions in agriculture, the genome sequencing of strains composing the inoculum is mandatory to avoid the spread of virulence and multidrug resistance genes carried by them through horizontal gene transfer to other bacteria in the environment. Moreover, the annotated genomes can enable the design of specific primers to trace the inoculum into the soil and provide insights into the molecular and genetic mechanisms of plant growth promotion and biocontrol activity. In the present work, the genome sequences of some members of beneficial microbial consortia that have previously been tested in greenhouse and field trials as promising biofertilizers for maize, tomato and wheat crops have been determined.

View Article and Find Full Text PDF

is an aerobic, Gram-negative bacterium that is responsible for many plant diseases. The bacterium is the causal agent of Pierce's disease in grapes and is also responsible for citrus variegated chlorosis, peach phony disease, olive quick decline syndrome and leaf scorches of various species. The production of biofilm is intrinsically linked with persistence and transmission in .

View Article and Find Full Text PDF

Transcriptome Analysis Reveals the Mechanism of Y0-C10-HSL on Biofilm Formation and Motility of .

Pharmaceuticals (Basel)

December 2024

School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.

() is a type of pathogen that takes advantage of opportunities to infect and form biofilm during infection. Inhibiting biofilm formation is a promising approach for the treatment of biofilm-related infections. Here, Y0-C10-HSL (N-cyclopentyl-n-decanamide) was designed, synthesized, and tested for its effect on biofilm formation, motility, and the () survival assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!