A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing Cell Line Stability by CRISPR/Cas9-Mediated Site-Specific Integration Based on Histone Modifications. | LitMetric

In traditional cell line design pipelines, cost- and time-intensive long-term stability studies must be performed due to random integration of the transgene into the genome. By this, integration into epigenetically silenced regions can lead to silencing of the recombinant promoter over time. Site-specific integration into regions with active chromatin structure can overcome this problem and lead to strong and stable gene expression. Here, we describe a detailed protocol to identify integration sites with epigenetically preferable properties by chromatin immunoprecipitation sequencing and use them for stable and strong gene expression by applying CRISPR/Cas9. Furthermore, the examination of the integration sites with focus on Cas9-targeted sequencing with nanopores is described.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3878-1_14DOI Listing

Publication Analysis

Top Keywords

site-specific integration
8
gene expression
8
integration sites
8
integration
6
enhancing cell
4
cell stability
4
stability crispr/cas9-mediated
4
crispr/cas9-mediated site-specific
4
integration based
4
based histone
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!