Background/aim: Although the importance of low-dose computed tomography (LDCT) screening is increasingly emphasized and implemented, many lung cancers continue to be incidentally detected during routine medical practices, and data on incidentally detected lung cancer (IDLC) remain scarce. This study aimed to investigate the clinical characteristics and prognosis of IDLCs by comparing them with screening-detected lung cancers (SDLCs).
Patients And Methods: In this retrospective study, subjects with cT1 (≤3 cm) pulmonary nodules detected on baseline computed tomography (CT), later pathologically confirmed as primary lung cancer in 2015, were included. Patients were categorized into IDLC and SDLC groups based on the setting of the first pulmonary nodule detection.
Results: Out of 457 subjects, 129 (28.2%) were IDLCs and 328 (71.8%) were SDLCs. The IDLC group, consisted of older individuals with a higher prevalence of smokers and underlying pulmonary disease, compared to the SDLC group. Adenocarcinomas were more frequently detected in SDLCs (87.5%) than in IDLCs (76.7%, p<0.001). The time to treatment initiation (TTI) and 5-year overall survival (OS) rates were similar. Multivariate analyses revealed underlying interstitial lung disease, DLCO, solidity of nodules and TNM stage as independent risk factors associated with mortality. Less than 30% of study participants would have been eligible for the current lung cancer screening program.
Conclusion: The IDLC group was associated with older age, higher rate of smokers, underlying pulmonary disease, and non-adenocarcinoma histology. However, prognosis was similar to that of the SDLC group, attributable to the similarity in TNM stage, strict adherence to guidelines, and short TTI. Furthermore, less than 30% of the participants would have been suitable for the existing lung cancer screening program, indicating a potential need to reconsider the scope for screening candidates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21873/anticanres.17131 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!