Background: Anorexia nervosa (AN) is a severe psychiatric disorder associated with frequent relapses and variability in treatment responses. Previous literature suggested that such variability is influenced by premorbid vulnerabilities such as abnormalities of the reward system. Several factors may indicate these vulnerabilities, such as neurocognitive markers (tendency to favour delayed reward, poor cognitive flexibility, abnormal decision process), genetic and epigenetic markers, biological and hormonal markers, and physiological markers.The present study will aim to identify markers that can predict body mass index (BMI) stability 6 months after discharge. The secondary aim of this study will be focused on characterising the biological, genetic, epigenetic and neurocognitive markers of remission in AN.

Methods And Analysis: One hundred and twenty-five (n=125) female adult inpatients diagnosed with AN will be recruited and evaluated at three different times: at the beginning of hospitalisation, when discharged and 6 months later. Depending on the BMI at the third visit, patients will be split into two groups: stable remission (BMI≥18.5 kg/m²) or unstable remission (BMI<18.5 kg/m²). One hundred (n=100) volunteers will be included as healthy controls.Each visit will consist in self-reported inventories (measuring depression, anxiety, suicidal thoughts and feelings, eating disorders symptoms, exercise addiction and the presence of comorbidities), neurocognitive tasks (Delay Discounting Task, Trail-Making Test, Brixton Test and Slip-of-action Task), the collection of blood samples, the repeated collection of blood samples around a standard meal and MRI scans at rest and while resolving a delay discounting task.Analyses will mainly consist in comparing patients stabilised 6 months later and patients who relapsed during these 6 months.

Ethics And Dissemination: Investigators will ask all participants to give written informed consent prior to participation, and all data will be recorded anonymously. The study will be conducted according to ethics recommendations from the Helsinki declaration (World Medical Association, 2013). It was registered on clinicaltrials.gov on 25 August 2020 as 'Remission Factors in Anorexia Nervosa (REMANO)', with the identifier NCT04560517 (for more details, see https://clinicaltrials.gov/ct2/show/record/NCT04560517). The present article is based on the latest protocol version from 29 November 2019. The sponsor, Institut National de la Santé Et de la Recherche Médicale (INSERM, https://www.inserm.fr/), is an academic institution responsible for the monitoring of the study, with an audit planned on a yearly basis.The results will be published after final analysis in the form of scientific articles in peer-reviewed journals and may be presented at national and international conferences.

Trial Registration Number: clinicaltrials.govNCT04560517.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208877PMC
http://dx.doi.org/10.1136/bmjopen-2023-077260DOI Listing

Publication Analysis

Top Keywords

genetic epigenetic
12
anorexia nervosa
8
biological genetic
8
neurocognitive markers
8
study will
8
markers
6
assessing biomarkers
4
remission
4
biomarkers remission
4
remission female
4

Similar Publications

Substrate transport and drug interaction of human thiamine transporters SLC19A2/A3.

Nat Commun

December 2024

ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China.

Thiamine and pyridoxine are essential B vitamins that serve as enzymatic cofactors in energy metabolism, protein and nucleic acid biosynthesis, and neurotransmitter production. In humans, thiamine transporters SLC19A2 and SLC19A3 primarily regulate cellular uptake of both vitamins. Genetic mutations in these transporters, which cause thiamine and pyridoxine deficiency, have been implicated in severe neurometabolic diseases.

View Article and Find Full Text PDF

The FvABF3-FvALKBH10B-FvSEP3 cascade regulates fruit ripening in strawberry.

Nat Commun

December 2024

State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.

View Article and Find Full Text PDF

Introduction: Single-nucleotide polymorphisms (SNPs) represent a significant genetic variation influencing individual responses to cosmetic dermatology treatments. SNP profiling offers a pathway to personalized skincare by enabling practitioners to predict patient outcomes, customize interventions, and mitigate risks.

Background: The integration of genetic insights into dermatology has gained traction, with SNP analysis revealing predispositions in skin characteristics, such as collagen degradation, pigmentation, and inflammatory responses.

View Article and Find Full Text PDF

Background: is the causal agent of Fusarium Head Blight (FHB) on wheat and produces deoxynivalenol (DON), known to cause extreme human and animal toxicosis. This species' genome contains genes involved in plant-pathogen interactions and regulated by chromatin modifications. Moreover, histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), have been employed to study gene transcription regulation because they can convert the structure of chromatin.

View Article and Find Full Text PDF

Heterodisomy in the locus is also a cause of pseudohypoparathyroidism type 1B (iPPSD3).

Front Endocrinol (Lausanne)

December 2024

Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain.

Objective: To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3.

Design: Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The locus is one of the loci within the genome that is imprinted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!