The identification of arsenic (As)-contaminated areas is an important prerequisite for soil management and reclamation. Although previous studies have attempted to identify soil As contamination via machine learning (ML) methods combined with soil spectroscopy, they have ignored the rarity of As-contaminated soil samples, leading to an imbalanced learning problem. A novel ML framework was thus designed herein to solve the imbalance issue in identifying soil As contamination from soil visible and near-infrared spectra. Spectral preprocessing, imbalanced dataset resampling, and model comparisons were combined in the ML framework, and the optimal combination was selected based on the recall. In addition, Bayesian optimization was used to tune the model hyperparameters. The optimized model achieved recall, area under the curve, and balanced accuracy values of 0.83, 0.88, and 0.79, respectively, on the testing set. The recall was further improved to 0.87 with the threshold adjustment, indicating the model's excellent performance and generalization capability in classifying As-contaminated soil samples. The optimal model was applied to a global soil spectral dataset to predict areas at a high risk of soil As contamination on a global scale. The ML framework established in this study represents a milestone in the classification of soil As contamination and can serve as a valuable reference for contamination management in soil science.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.142697 | DOI Listing |
Sci Total Environ
January 2025
Temple University, Department of Civil and Environmental Engineering, 1947 North 12(th) Street, Philadelphia, PA 19122, United States. Electronic address:
The importance of pH in stormwater bioretention beds cannot be overstated since it impacts plant and microbial populations and removal of potentially toxic elements (PTEs) from stormwater runoff. This study investigated the effects of dolomite amendment on pH neutralization and subsequent PTE immobilization in bioretention media. To assess dolomite dissolution, pH neutralization, and PTE immobilization, engineered bioretention media was amended with different dolomite ratios and samples of dolomite-amended media were collected from two bioretention beds, one and two months after installation.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China. Electronic address:
A comprehensive understanding of cadmium (Cd) migration in soils near contaminated hotspots is crucial for optimizing remediation efforts and ensuring crop health. This study investigates agricultural soils from four sites in mining and sewage-irrigation areas, assessing the impact of inorganic and organic fertilizer application on soil Cd remobilization. Results revealed that fertilization, particularly with mineral phosphorus, disrupts soil stability, substantially increases short-term Cd mobility in vulnerable regions.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
Organophosphate flame retardants (OPFRs) are a class of substances that pose potential risks to human health and ecosystems due to their large-scale production, wide range of applications, and ubiquitous presence in the environment. With their potential for long-range atmospheric transport (LRAT), OPFR pollution in high-altitude areas has become an increasing concern. Herein, a general pretreatment method for OPFRs across various sample matrices was established and combined with gas chromatography-mass spectrometry (GC-MS), utilizing a programmed temperature ramp in the vaporization chamber to enable high-throughput detection of OPFRs in various environmental matrices.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Belém, 66055-090, PA, Brazil. Electronic address:
Waste pile substrates from Fe mining may carry potentially toxic elements (PTE). Rehabilitation efforts must maintain soil vegetation cover effectively, avoiding the dispersion of particulate matter and reducing the risk to the environment and human health. Therefore, this study aims to evaluate the pseudo-total and extractable contents, perform chemical fractionation, and assess the bioaccessibility and risk of PTE in waste piles of Fe mining in the Eastern Amazon.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile; Instituto para el Desarrollo Sustentable, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile. Electronic address:
The volcanic soils in Chile, where a significant portion of agricultural activities take place, are impacted by the presence of veterinary drugs, including sulfamethoxazole (SMX). The study examines how different soil types influence the movement and retention of sulfamethoxazole (SMX) across four regions of Chile, focusing on conditions at a neutral pH of 7.0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!