LncRNA H19/miR-107 regulates endothelial progenitor cell pyroptosis and promotes flow recovery of lower extremity ischemia through targeting FADD.

Biochim Biophys Acta Mol Basis Dis

Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510800, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:

Published: October 2024

AI Article Synopsis

  • Peripheral artery disease (PAD) is a condition that affects blood flow and is becoming more common around the world.
  • Researchers found that a special molecule called H19 in certain cells can help improve blood flow and new blood vessel growth when used in treatment.
  • In tests with mice, adding H19 to these cells not only helped them grow and move better but also improved blood flow in their legs, showing promise for treating severe cases of PAD.

Article Abstract

Background: Peripheral artery disease (PAD) is an ischemic disease with a rising incidence worldwide. The lncRNA H19 (H19) is enriched in endothelial progenitor cells (EPCs), and transplantation of pyroptosis-resistant H19-overexpressed EPCs (oe-H19-EPCs) may promote vasculogenesis and blood flow recovery in PAD, especially with critical limb ischemia (CLI).

Methods: EPCs isolated from human peripheral blood was characterized using immunofluorescence and flow cytometry. Cell proliferation was determined with CCK8 and EdU assays. Cell migration was assessed by Transwell and wound healing assays. The angiogenic potential was evaluated using tube formation assay. The pyroptosis pathway-related protein in EPCs was detected by western blot. The binding sites of H19 and FADD on miR-107 were analyzed using Luciferase assays. In vivo, oe-H19-EPCs were transplanted into a mouse ischemic limb model, and blood flow was detected by laser Doppler imaging. The transcriptional landscape behind the therapeutic effects of oe-H19-EPCs on ischemic limbs were examined with whole transcriptome sequencing.

Results: Overexpression of H19 in EPCs led to an increase in proliferation, migration, and tube formation abilities. These effects were mediated through pyroptosis pathway, which is regulated by the H19/miR-107/FADD axis. Transplantation of oe-H19-EPCs in a mouse ischemic limb model promoted vasculogenesis and blood flow recovery. Whole transcriptome sequencing indicated significant activation of vasculogenesis pathway in the ischemic limbs following treatment with oe-H19-EPCs.

Conclusions: Overexpression of H19 increases FADD level by competitively binding to miR-107, leading to enhanced proliferation, migration, vasculogenesis, and inhibition of pyroptosis in EPCs. These effects ultimately promote the recovery of blood flow in CLI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2024.167323DOI Listing

Publication Analysis

Top Keywords

blood flow
16
flow recovery
12
endothelial progenitor
8
vasculogenesis blood
8
tube formation
8
mouse ischemic
8
ischemic limb
8
limb model
8
ischemic limbs
8
overexpression h19
8

Similar Publications

Wounds from gunshots and other explosive devices are a source of loss of substances directly or secondary to a well- conducted debridement. In addition, these types of wounds are by definition contaminated. The major challenge in this context for any surgeon remains coverage.

View Article and Find Full Text PDF

Progressive systemic inflammation precedes decompensation in compensated cirrhosis.

JHEP Rep

February 2025

Department of Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain.

Background & Aims: Systemic inflammation is a driver of decompensation in cirrhosis with unclear relevance in the compensated stage. We evaluated inflammation and bacterial translocation markers in compensated cirrhosis and their dynamics in relation to the first decompensation.

Methods: This study is nested within the PREDESCI trial, which investigated non-selective beta-blockers for preventing decompensation in compensated cirrhosis and clinically significant portal hypertension (CSPH: hepatic venous pressure gradient ≥10 mmHg).

View Article and Find Full Text PDF

Unlabelled: Iron deficiency anaemia (IDA) makes an individual prone to bacterial infections. The antimicrobial defence mechanism of neutrophils is orchestrated by Nicotinamide Adenine Dinucleotide Phosphate Hydrogen (NADPH) oxidative burst which is iron-dependent. The few previous studies documenting a decrease in neutrophil oxidative burst in iron-deficient children have been based mainly on the Nitro blue tetrazolium test (NBT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!