Exploring viral contamination in urban groundwater and runoff.

Sci Total Environ

Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), 08001 Barcelona, Spain.

Published: October 2024

The reliance of the global population on urban aquifers is steadily increasing, and urban aquifers are susceptible to pathogenic contamination through sources such as sewer leakage or urban runoff. However, there is insufficient monitoring of groundwater quality in urban areas. In this study, quantitative polymerase chain reaction (qPCR) was employed to evaluate the presence of human fecal viral indicators and viral pathogens in urban wastewater (n = 13) and groundwater (n = 12) samples from four locations in Barcelona with different degrees of urbanization, as well as in runoff samples (n = 2). Additionally, a target enrichment sequencing (TES) approach was utilized to explore the viral diversity within groundwater and runoff samples, offering insights into viral contamination and potential virus transmission routes in urban areas. Human adenovirus (HAdV) was identified in all wastewater samples, 67 % (8/12) of groundwater samples, and one runoff sample by qPCR indicating human viral fecal contamination. The viral pathogen Norovirus genogroup GI (NoV GI) was detected in wastewater and two winter groundwater samples from highly and medium urbanized areas. NoV genogroup GII (NoV GII), Enterovirus (EV) and SARS-CoV-2 were exclusively detected in wastewater. Human and other vertebrate viruses were detected in groundwater and runoff samples using TES. This study gives insights about the virome present in urban water sources, emphasizing the need for thorough monitoring and deeper understanding to address emerging public health concerns.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.174238DOI Listing

Publication Analysis

Top Keywords

groundwater runoff
12
runoff samples
12
viral contamination
8
urban
8
urban aquifers
8
urban areas
8
groundwater samples
8
detected wastewater
8
groundwater
7
samples
7

Similar Publications

Sludge landfilling is widely used in China, accounting for approximately 65% of total sludge disposal, due to its simplicity and cost-effectiveness. However, with increasing land scarcity and stricter environmental regulations, the Chinese government has emphasized reducing sludge landfilling. Despite these efforts, sludge historically disposed of in landfills continues to pose risks, including heavy metal leaching and contamination of groundwater and soil.

View Article and Find Full Text PDF

Understanding the geochemical mechanisms governing hexavalent chromium (Cr(VI)) in groundwater is essential for mitigating health risks. However, the processes driving Cr(VI) accumulation and migration in loess regions remain insufficiently understood. This study investigated the occurrence, release, and migration mechanisms of Cr(VI) across different groundwater environmental units (GEUs) in the south-central Loess Plateau, China.

View Article and Find Full Text PDF

A comprehensive scientific analysis of temporal and spatial fluctuations of pollutants during the migration of groundwater is essential for precisely predicting their dispersion patterns and promoting rational regional development planning. In this research paper, a field radial dispersion test was conducted in decentralized drinking water sources downstream of the Fu Tuan River basin in Rizhao City, Shandong Province, China (FRSC). Chloride ion (Cl) solution was utilized as a tracer for the experiment.

View Article and Find Full Text PDF

DeepBase: A Deep Learning-based Daily Baseflow Dataset across the United States.

Sci Data

January 2025

Department of Civil, Construction and Environmental Engineering, University of Alabama, AL, Tuscaloosa, USA.

High quality baseflow data is important for advancing water resources modeling and management, as it captures the critical role of groundwater and delayed sources in contributing to streamflow. Baseflow is the main recharge source of runoff during the dry period, particularly in understanding the interaction between surface water and groundwater systems. This study focuses on estimating baseflow using deep learning algorithms that enhance the estimation capabilities in both gauged and ungauged basins.

View Article and Find Full Text PDF

Optimal allocation and application of water resources based on real water saving in a region with intensive human activity.

J Environ Manage

December 2024

State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, PR China. Electronic address:

As water demand continues to grow, water resource management that only restricts water withdrawal can no longer ensure sustainable water use, especially in region with intensive human activities. In the water cycle of precipitation, runoff and evapotranspiration at the basin scale, only water evapotranspiration is the actual consumption of water. Water resource management that aims to control the total consumption within a basin is referred to as "real water saving," which can prevent the depletion of water resources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!