The cuticular protein gene ApCP7 and ApCP62 are essential for reproduction in Acyrthosiphon pisum, affecting ecdysis and survival.

Int J Biol Macromol

Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki, 12618 Giza, Egypt.

Published: September 2024

Cuticular proteins, in conjunction with chitin, compose the insect exoskeleton, and play a key role in the growth, development, and molting of insects. However, the specific functions of most cuticular protein genes in the growth, development, and reproductive processes of the pea aphid (Acyrthosiphon pisum) remain unclear. In this study, we have identified six cuticular protein genes in the pea aphid, namely ApCP7, ApCP10, ApCP19, ApCP19.8-like, ApCP35 and ApCP62. We found that the expression levels of six genes were highly expressed during the adult stage, and except for ApCP10, which is highly expressed in the pea aphid cuticle, other genes were highly expressed in the ovaries. Subsequently, we observed that the survival rate and fecundity of pea aphid were significantly lower than those of the control group after silencing ApCP7 and ApCP62 through RNA interference. Furthermore, when ApCP7 transcript levels were reduced, aphid encountered difficulties in molting, were smaller in body size, and exhibited a darker body color. These results indicate that ApCP7 and ApCP62 are involved in the development and reproduction of pea aphid, and could be used as RNAi targets for controlling pea aphid.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.133402DOI Listing

Publication Analysis

Top Keywords

pea aphid
24
cuticular protein
12
apcp7 apcp62
12
highly expressed
12
acyrthosiphon pisum
8
growth development
8
protein genes
8
genes highly
8
aphid
7
pea
6

Similar Publications

Differential genome-wide expression profiles in response to high temperatures in the two body-color morphs of the pea aphid.

Int J Biol Macromol

December 2024

State Key Laboratory of Grassland Agro-Ecosystems, National Demonstration Center for Experimental Grassland Science Education, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China. Electronic address:

Global warming and extremely high temperatures affect insect survival and distribution. In this study, we characterized the gene expression profiles of red (PAR) and green (PAG) morphs of the pea aphid (Acyrthosiphon pisum) at three high temperatures (30 °C, 36 °C, and 38 °C) and three treatment durations (6 h, 12 h, and 24 h) by high-throughput sequencing. Both PAR and PAG increased the number of significantly differentially expressed genes as temperature and treatment duration increased, particularly for genes associated with stress resistance, lipid metabolism, cuticular protein expression, and the initiation of various regulatory mechanisms.

View Article and Find Full Text PDF

Successful plant growth requires plants to minimize harm from antagonists and maximize benefit from mutualists. However, these outcomes may be difficult to achieve simultaneously, since plant defenses activated in response to antagonists can compromise mutualism function, and plant resources allocated to defense may trade off with resources allocated to managing mutualists. Here, we investigate how antagonist attack affects plant ability to manage mutualists with sanctions, in which a plant rewards cooperative mutualists and/or punishes uncooperative mutualists.

View Article and Find Full Text PDF

Efficacy and Fate of RNA Interference Molecules in the Green Pea Aphid, Acyrthosiphon pisum.

Arch Insect Biochem Physiol

December 2024

Biological Control of Insects Research Laboratory, Research Park, USDA Agricultural Research Service, Columbia, Missouri, USA.

RNA interference (RNAi) is a promising technology for controlling insect pests of agriculture. This technology is mediated through the application of double-stranded RNAs (dsRNAs), which are processed within the insect cells into small interfering RNAs (siRNAs). These molecules then target and reduce the expression of the insect-specific genes that can kill or reduce the performance of the pest.

View Article and Find Full Text PDF

The genome of National Institute of Advanced Industrial Science and Technology (AIST), an obligate bacterial endosymbiont from a Japanese strain of the pea aphid , was determined. The genome sequence provides valuable information for comparative and evolutionary aspects of the intimate insect-microbe mutualism.

View Article and Find Full Text PDF

Alfalfa (Medicago sativa L.) is a commonly grown forage crop in Oregon and California harvested on 350,000 and 480,000 acres, respectively, in 2023 (USDA-NASS 2023). Forage alfalfa is grown as a perennial crop for about four years in the same field and each season, the crop is cut 3-4 times for hay production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!