Environmental cues, through Pavlovian learning, become conditioned stimuli that invigorate and guide animals toward rewards. Dopamine (DA) neurons in the ventral tegmental area (VTA) and substantia nigra (SNc) are crucial for this process, via engagement of a reciprocally connected network with their striatal targets. Critically, it remains unknown how dopamine neuron activity itself engages dopamine signals throughout the striatum, across learning. Here, we investigated how optogenetic Pavlovian cue conditioning of VTA or SNc dopamine neurons directs cue-evoked behavior and shapes subregion-specific striatal dopamine dynamics. We used a fluorescent biosensor to monitor dopamine in the nucleus accumbens (NAc) core and shell, dorsomedial striatum (DMS), and dorsolateral striatum (DLS). We demonstrate spatially heterogeneous, learning-dependent dopamine changes across striatal regions. Although VTA stimulation-evoked robust dopamine release in NAc core, shell, and DMS, predictive cues preferentially recruited dopamine release in NAc core, starting early in training, and DMS, late in training. Negative prediction error signals, reflecting a violation in the expectation of dopamine neuron activation, only emerged in the NAc core and DMS. Despite the development of vigorous movement late in training, conditioned dopamine signals did not emerge in the DLS, even during Pavlovian conditioning with SNc dopamine neuron activation, which elicited robust DLS dopamine release. Together, our studies show a broad dissociation in the fundamental prediction and reward-related information generated by VTA and SNc dopamine neuron populations and signaled by dopamine across the striatum. Further, they offer new insight into how larger-scale adaptations across the striatal network emerge during learning to coordinate behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11279555 | PMC |
http://dx.doi.org/10.1016/j.cub.2024.05.069 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!