This review explores the present knowledge of the unique properties of shark skin and possible applications of its functionalities, including drag reduction and swimming efficiency. Tooth-like denticles, with varied morphologies, sizes, and densities across the shark's body, significantly influence the flow and interaction of fluids. Examining dermal denticle morphology, this study unveils the functional properties of real shark skin, including mechanical properties such as stiffness, stress-strain characteristics, and denticle density's impact on tensile properties. The adaptive capabilities of the Mako shark scales, especially in high-speed swimming, are explored, emphasizing their passive flow-actuated dynamic micro-roughness. This research contains an overview of various studies on real shark skin, categorizing them into skin properties, morphology, and hydrodynamics. The paper extends exploration into industrial applications, detailing fabrication techniques and potential uses in vessels, aircraft, and water pipes for friction reduction. Three manufacturing approaches, bio-replicated forming, direct fabrication, and indirect manufacturing, are examined, with 3D printing and photoconfiguration technology emerging as promising alternatives. Investigations into the mechanical properties of shark skin fabrics reveal the impact of denticle size on tensile strength, stress, and strain. Beyond drag reduction, the study highlights the shark skin's role in enhancing thrust and lift during locomotion. The paper identifies future research directions, emphasizing live shark testing and developing synthetic skin with the help of 3D printing incorporating the bristling effect.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-3190/ad5c25DOI Listing

Publication Analysis

Top Keywords

shark skin
20
skin properties
8
properties shark
8
drag reduction
8
real shark
8
mechanical properties
8
skin
7
properties
7
shark
7
characterization shark
4

Similar Publications

Engineering Wettability Transitions on Laser-Textured Shark Skin-Inspired Surfaces via Chemical Post-Processing Techniques.

Micromachines (Basel)

November 2024

Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.

Surface wettability, the interaction between a liquid droplet and the surface it contacts, plays a key role in influencing droplet behavior and flow dynamics. There is a growing interest in designing surfaces with tailored wetting properties across diverse applications. Advanced fabrication techniques that create surfaces with unique wettability offer significant innovation potential.

View Article and Find Full Text PDF

Microplastic (MP) pollution is an emerging environmental problem worldwide and has caused widespread concern both in terrestrial and aquatic ecosystems due to their potential impacts on the human health, and health of aquatic organisms and the environment. Little is known about the exposure of top marine predators to MP contamination (debris 0.1μm - <5mm, also called MPs).

View Article and Find Full Text PDF

There are about 33,000 different species of fish and they are visually identified using variety of traits, i.e., size and shape of body, head's size and shape, skin pattern, fin pattern, mouth pattern, scale pattern, and eye pattern etc.

View Article and Find Full Text PDF

The skin is the most extensive organ in vertebrates, composed of two layers: the epidermis and the dermis. Sensory axons originating from the dorsal root ganglia innervate the skin mechanoreceptors in the dermis. Elasmobranchs, which appeared 380 million years ago, are characterized by rough skin composed of dermal denticles.

View Article and Find Full Text PDF

The emergence and rapid spread of multidrug-resistant bacterial strains is a growing concern of public health. Inspired by the natural bactericidal surfaces of lotus leaves and shark skin, increasing attention has been focused on the use of mechano-bactericidal methods to create surfaces with antibacterial and/or bactericidal effects. There have been several studies exploring the bactericidal effect of nanostructured surfaces under various combinations of parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!