Purpose: To develop and validate an artificial intelligence (AI) application in a clinical setting to decide whether dynamic contrast-enhanced (DCE) sequences are necessary in multiparametric prostate MRI.
Methods: This study was approved by the institutional review board and requirement for study-specific informed consent was waived. A mobile app was developed to integrate AI-based image quality analysis into clinical workflow. An expert radiologist provided reference decisions. Diagnostic performance parameters (sensitivity and specificity) were calculated and inter-reader agreement was evaluated.
Results: Fully automated evaluation was possible in 87% of cases, with the application reaching a sensitivity of 80% and a specificity of 100% in selecting patients for multiparametric MRI. In 2% of patients, the application falsely decided on omitting DCE. With a technician reaching a sensitivity of 29% and specificity of 98%, and resident radiologists reaching sensitivity of 29% and specificity of 93%, the use of the application allowed a significant increase in sensitivity.
Conclusion: The presented AI application accurately decides on a patient-specific MRI protocol based on image quality analysis, potentially allowing omission of DCE in the diagnostic workup of patients with suspected prostate cancer. This could streamline workflow and optimize time utilization of healthcare professionals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2024.111581 | DOI Listing |
Biomed Phys Eng Express
January 2025
Physics Department, University at Albany, 1400 Washington Ave, Albany, New York, 12222-0100, UNITED STATES.
Conventional x-ray radiography relies on attenuation differences in the object, which often results in poor contrast in soft tissues. X-ray phase imaging has the potential to produce higher contrast but can be difficult to utilize. Instead of grating-based techniques, analyzer-based imaging, also known as diffraction enhanced imaging (DEI), uses a monochromator crystal with an analyzer crystal after the object.
View Article and Find Full Text PDFACS Sens
January 2025
The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China.
Microneedle (MN) sensors have great promise for food safety detection, but the rapid preparation of MNs for surface-enhanced Raman scattering (SERS) sensors with tunable and homogeneous nanoparticles remains a great challenge. To address this, a SERS sensor of gold nanoparticles@polydopamine@poly(methyl methacrylate) MN (AuNPs@PDA@PMMA-MN) was developed. The extended-Derjaguin-Landau-Verwey-Overbeek theory was applied to calculate the interaction energy between AuNPs and PDA.
View Article and Find Full Text PDFPLoS One
January 2025
College of Arts, Anhui Xinhua University, Hefei, China.
To improve the expressiveness and realism of illustration images, the experiment innovatively combines the attention mechanism with the cycle consistency adversarial network and proposes an efficient style transfer method for illustration images. The model comprehensively utilizes the image restoration and style transfer capabilities of the attention mechanism and the cycle consistency adversarial network, and introduces an improved attention module, which can adaptively highlight the key visual elements in the illustration, thereby maintaining artistic integrity during the style transfer process. Through a series of quantitative and qualitative experiments, high-quality style transfer is achieved, especially while retaining the original features of the illustration.
View Article and Find Full Text PDFStrahlenther Onkol
January 2025
Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
Purpose: Recent advancements in imaging, particularly 18F-fluorodeoxyglucose positron-emission tomography-computed tomography (FDG-PET/CT), have improved the detection of involved lymph nodes, thus influencing staging accuracy and potentially treatment outcomes. This study is a post hoc analysis of the GAZAI trial data to evaluate the impact of FDG-PET/CT versus computed tomography (CT) alone on radiation target volumes for involved-site radiotherapy (IS-RT) in early-stage follicular lymphoma (FL).
Methods: All patients in the GAZAI trial underwent pretherapeutic FDG-PET/CT examinations, which were subject to central quality control.
Strahlenther Onkol
January 2025
Department of Radiation Oncology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany.
Background: Preoperative chemoradiotherapy combined with total mesorectal excision (TME) is a standard treatment for locally advanced rectal cancer (LARC). However, lateral pelvic lymph nodes (LPLNs) are often inadequately treated with standard regimens. This study examines the treatment and postoperative outcomes in LARC patients receiving a simultaneous integrated boost (SIB) for LPLNs during long-course chemoradiotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!