Multilayer film packaging (MLP) waste was decomposed completely at 500 °C. Catalysts were employed to convert residue polymer to waxes via pyrolysis at 500 °C. The activities achieved from using mordenite (Si/Al = 10), H-ZSM-5 (Si/Al = 25), MCM-41, and Al-MCM-41 (Si/Al ratio of 25, 50, and 75) catalysts were studied. The yield and property of the wax were improved with the use of the catalysis with various acidity and porous structure. The low yield of the waxes, when using mordenite and H-ZSM-5 catalysts, was caused by the microporous structure and strong acidic properties of the catalysts resulting in larger amount of gas production. The MCM-41 catalyst modified with various aluminum content raised the wax yield to 60 %. Al-MCM-41(50) produced the largest amount of wax when compared to Al-MCM-41(25), Al-MCM-41(75), and MCM-41. The mild acidity and mesoporous structure of Al-MCM-41(50) significantly enhanced the paraffins structure of the obtained waxes over other structures, while lower Si/Al ratios favored the conversion of paraffins toward olefin structure. The pyrolysis of MLP with Al-MCM-41(50) produced paraffins and olefins with the middle carbon ranging (C11-20) which were similar quality to pharmaceutical grade of petroleum wax. The spent catalysts of Al-MCM-41 series gradually decreased in wax yield and paraffins composition during the sequential MLP pyrolysis; however, the activity of catalysts was recovered after calcination of the spent catalysts. Furthermore, the viscosity of waxes obtained from Al-MCM-41(50) was 2384 Pa.s at 25 °C similar to the viscosity from commercial petroleum jelly base of 2333 Pa.s.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2024.06.012 | DOI Listing |
Anal Methods
January 2025
Microelectronic Research & Development Center, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
An integrated magnetoimpedance (MI) biosensor microfluidic magnetic platform was proposed for the evaluation of the cardiac marker, cardiac troponin I (cTnI). This bioanalyte evaluation platform mainly comprised three external permanent magnets (PMs), one MI element, two peelable SiO film units and a microfluidic chip (MFC). The MI element was made of micro-electro-mechanical system (MEMS)-based multilayered [Ti (6 nm)/FeNi (100 nm)]/Cu (400 nm)/[Ti (6 nm)/FeNi (100 nm)] thin films and designed as meander structures with closed magnetic flux.
View Article and Find Full Text PDFNat Commun
January 2025
Electronic Materials Research Laboratory & Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Multilayer ceramic capacitor as a vital core-component for various applications is always in the spotlight. Next-generation electrical and electronic systems elaborate further requirements of multilayer ceramic capacitors in terms of higher energy storage capabilities, better stabilities, environmental-friendly lead-free, etc., where these major obstacles may restrict each other.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan.
Organic multilayer systems, which are stacked layers of different organic materials, are used in various organic electronic devices such as organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs). In particular, OFETs are promising as key components in flexible electronic devices. In this study, we investigated how the inclusion of an insulating tetratetracontane (TTC) interlayer in ambipolar indigo-based OFETs can be used to alter the crystallinity and electrical properties of the indigo charge transport layer.
View Article and Find Full Text PDFAppl Spectrosc
December 2024
Chair of Waste Processing Technology and Waste Management, Department of Environmental and Energy Process Engineering, Montanuniversitaet Leoben, Leoben, Austria.
The low thickness of plastic films poses a challenge when using near-infrared (NIR) spectroscopy as it affects the spectral quality and classification. This research focuses on offering a solution to the challenge of classifying multilayer plastic film materials with a focus on polyolefin multilayer plastics. It presents the importance of spectral quality on accurate classification.
View Article and Find Full Text PDFAdv Mater
December 2024
Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
High contact resistance remains the primary obstacle that hinders further advancements of organic semiconductors (OSCs) in electronic circuits. While significant effort has been directed toward lowering the energy barrier at OSC/metal contact interfaces, approaches toward reducing another major contributor to overall contact resistance - the bulk resistance - have been limited to minimizing the thickness of OSC films. However, the out-of-plane conductivity of OSCs, a critical aspect of bulk resistance, has largely remained unaddressed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!