Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In response to the increasing demand for nutritionally rich foods, consumer preference for protein-enriched beverages has grown. However, heat-induced protein aggregation and gelation significantly hinders the production of high-protein drinks. In this study, oil-in-water (O/W) emulsions with exceptional thermal stability were formulated using modified soy protein particles (MSPs). These MSPs effectively resisted gel formation, even at a protein concentration of up to 20% (w/v). In contrast, emulsions prepared with untreated soy proteins (SPs) experienced pronounced gelation under identical conditions. The compact structure of MSPs, in comparison to SPs, imparted resistance to heat-induced denaturation and aggregation. Additionally, the emulsion displayed heightened heat processing insensitivity, due to the enhanced hydrophobicity of MSPs and their rapid adsorption at the oil-water interface, resulting in a denser, more elastic, and resilient interfacial film. These findings provide practical insights for the formulation of protein-rich milk alternatives, meeting the evolving market demands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.140157 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!