Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Characterization of lung sounds (LS) is indispensable for diagnosing respiratory pathology. Although conventional neural networks (NNs) have been widely employed for the automatic diagnosis of lung sounds, deep neural networks can potentially be more useful than conventional NNs by allowing accurate classification without requiring preprocessing and feature extraction. Utilizing the long short-term memory (LSTM) layers to reveal the sequence-based properties of the LS time series, a novel architecture consisting of a cascade of convolutional long short-term memory (ConvLSTM) and LSTM layers, namely ConvLSNet is developed, which permits highly accurate diagnosis of pulmonary disease states. By modeling the multichannel lung sounds through the ConvLSTM layer, the proposed ConvLSNet architecture can concurrently deal with the spatial and temporal properties of the six-channel LS recordings without heavy preprocessing or data transformation. Notably, the proposed model achieves a classification accuracy of 97.4 % based on LS data corresponding to three pulmonary conditions, namely asthma, COPD, and the healthy state. Compared with architectures consisting exclusively of CNN or LSTM layers, as well as those employing a cascade integration of 2DCNN and LSTM layers, the proposed ConvLSNet architecture exhibited the highest classification accuracy, while imposing the lowest computational cost as quantified by the number of parameters, training time, and learning rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.artmed.2024.102922 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!