A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Strontium-doped bioactive glass-functionalized polyetheretherketone enhances osseointegration by facilitating cell adhesion. | LitMetric

In the field of orthopedics, surgeons have long been facing the challenge of loosening of external fixation screws due to inherent material characteristics. Despite Polyetheretherketone (PEEK) being employed as an orthopedic implant material for many years, its bio-inert nature often hinders bone healing due to the limited bioactivity, which restricts its clinical applications. Herein, a new type of orthopedic implant (Sr-SPK) was developed by introducing strontium (Sr)-doped mesoporous bioactive glass (Sr-MBG) onto the surface of PEEK implants through a simple and feasible method. In vitro experiments revealed that Sr-SPK effectively promotes osteogenic differentiation while concurrently suppressing the formation of osteoclasts. The same results were validated in vivo with Sr-SPK significantly improving bone integration. Upon investigation, it was found that Sr-SPK promotes adhesion among bone marrow mesenchymal stem cells (BMSCs) thereby promoting osteogenesis by activating the regulation of actin cytoskeletal and focal adhesion pathways, as identified via transcriptome analysis. In essence, these findings suggest that the newly constructed Sr-doped biofunctionalized PEEK implant developed in this research can promote osteoblast differentiation and suppress osteoclast activity by enhancing cell adhesion processes. These results underline the immense potential of such an implant for wide-ranging clinical applications in orthopedics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2024.114042DOI Listing

Publication Analysis

Top Keywords

cell adhesion
8
orthopedic implant
8
clinical applications
8
strontium-doped bioactive
4
bioactive glass-functionalized
4
glass-functionalized polyetheretherketone
4
polyetheretherketone enhances
4
enhances osseointegration
4
osseointegration facilitating
4
facilitating cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!