Integrated analysis of histone modification features in clear cell renal cancer for risk stratification and therapeutic prediction.

Transl Oncol

Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China; Institute of Urology, Anhui Medical University, Hefei, 230022, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, 230022, PR China. Electronic address:

Published: September 2024

Clear cell renal cell carcinoma (ccRCC) is a common urological malignancy that is involved in tumor genesis and development. However, few studies have focused on the predictive role of the global histone modification status in ccRCC. A total of 621 patients with complete transcript information and corresponding clinical profiles were obtained from TCGA-KIRC, GSE22541, and EMTAB3267 cohorts. A total of 122 histone modification relevant pathways were derived from MSigDB, and their activation status was quantified using GSVA. Differentially expressed genes (DEGs) were identified and filtrated using univariate Cox regression analysis. The signature was built relied on the least absolute shrinkage and selection operator (LASSO) regression analysis, and evaluated from survival difference, chemotherapy response, and activated pathways. A novel nomogram was established to quantify the probability of death in different patients. Seven risky and fifty-eight protective genes were used in LASSO analysis, and six genes were used to build the histone modification gene (HiMG) signature, which showed significant independent prognostic potential in all three cohorts. The nomogram showed acceptable incremental predictions. CKS2 (p = 0.004) and PD1 (p = 0.002) expression were significantly higher in grade 3 ccRCC than in grades 1-2. CKS2 siRNA in renal cancer cells caused reductions in cellular proliferation, migration, and invasion. Patients with low HiMG may be potential responders to rapamycin, erlotinib and FH535, while AZD6482 and CHIR-99,021 may be more suitable for patients with high HiMG levels. ccRCC histone modification distribution and a clinical signature for prognosis prediction, clinical decision making, and molecular mechanism exploration, were established for risk stratification and personalized treatments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259817PMC
http://dx.doi.org/10.1016/j.tranon.2024.102042DOI Listing

Publication Analysis

Top Keywords

histone modification
20
clear cell
8
cell renal
8
renal cancer
8
risk stratification
8
regression analysis
8
histone
5
modification
5
integrated analysis
4
analysis histone
4

Similar Publications

The role of Box A of HMGB1 in producing γH2AX associated DNA breaks in lung cancer.

Sci Rep

January 2025

Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.

An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).

View Article and Find Full Text PDF

Leveraging Epigenetic Alterations in Pancreatic Ductal Adenocarcinoma for Clinical Applications.

Semin Cancer Biol

January 2025

Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 84505 Bratislava, Slovakia. Electronic address:

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy characterized by late detection and poor prognosis. Recent research highlights the pivotal role of epigenetic alter- ations in driving PDAC development and progression. These changes, in conjunction with genetic mutations, contribute to the intricate molecular landscape of the disease.

View Article and Find Full Text PDF

Breast cancer (BC) subtypes exhibit distinct epigenetic landscapes, with triple-negative breast cancer (TNBC) lacking effective targeted therapies. This study investigates histone biomarkers and therapeutic vulnerabilities across BC subtypes. The immunohistochemical profiling of >20 histone biomarkers, including histone modifications, modifiers, and oncohistone mutations, was conducted on a discovery cohort and a validation cohort of BC tissues, healthy controls, and cell line models.

View Article and Find Full Text PDF

Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility.

View Article and Find Full Text PDF

Epigenetic Regulation of Stromal and Immune Cells and Therapeutic Targets in the Tumor Microenvironment.

Biomolecules

January 2025

College of Pharmaceutical Sciences, Hangzhou First People's Hospital, Zhejiang Chinese Medical University, Hangzhou 311402, China.

The tumor microenvironment (TME) plays a pivotal role in neoplastic initiation and progression. Epigenetic machinery, governing the expression of core oncogenes and tumor suppressor genes in transformed cells, significantly contributes to tumor development at both primary and distant sites. Recent studies have illuminated how epigenetic mechanisms integrate external cues and downstream signals, altering the phenotype of stromal cells and immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!