Supramolecular Complexation-Enhanced CO Chemisorption in Amine-Derived Sorbents.

Chemistry

Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN 37996, USA.

Published: August 2024

A supramolecular complexation approach is developed to improve the CO chemisorption performance of solvent-lean amine sorbents. Operando spectroscopy techniques reveal the formation of carbamic acid in the presence of a crown ether. The reaction pathway is confirmed by theoretical simulation, in which the crown ether acts as a proton acceptor and shuttle to drive the formation and stabilization of carbamic acid. Improved CO capacity and diminished energy consumption in sorbent regeneration are achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202402137DOI Listing

Publication Analysis

Top Keywords

carbamic acid
8
crown ether
8
supramolecular complexation-enhanced
4
complexation-enhanced chemisorption
4
chemisorption amine-derived
4
amine-derived sorbents
4
sorbents supramolecular
4
supramolecular complexation
4
complexation approach
4
approach developed
4

Similar Publications

Unveiling the enzymatic pathway of UMG-SP2 urethanase: insights into polyurethane degradation at the atomic level.

Chem Sci

December 2024

LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal

The recently discovered metagenomic urethanases UMG-SP1, UMG-SP2, and UMG-SP3 have emerged as promising tools to establish a bio-based recycling approach for polyurethane (PU) waste. These enzymes are capable of hydrolyzing urethane bonds in low molecular weight dicarbamates as well as in thermoplastic PU and the amide bond in polyamide employing a Ser-Ser -Lys triad for catalysis, similar to members of the amidase signature protein superfamily. Understanding the catalytic mechanism of these urethanases is crucial for enhancing their enzymatic activity and improving PU bio-recycling processes.

View Article and Find Full Text PDF

The five-coordinate complex [RuCl(PNP)] () was synthesized from the binuclear [RuCl(-cym)] with a PNP-type ligand (PNP = 3,6-di--butyl-1,8-bis(dipropylphosphino)methyl)-9-carbazole - (Cbzdiphos )H) in a toluene solution, within 20 h at 110 °C, producing a green solid, which was precipitated with a 1/1 mixture of - pentane/HMDSO. The complex was characterized by NMR-H, C, and P{H}, mass spectroscopy-LIFDI, FTIR, UV/vis spectroscopy, and cyclic voltammetry, as well as a description of the optimized structure by DFT calculation. The reactivity of was investigated in the presence of potassium triethylborohydride (KBEtH, in THF solution of 1.

View Article and Find Full Text PDF

Sequential Pore Functionalization in MOFs for Enhanced Carbon Dioxide Capture.

JACS Au

December 2024

Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.

The capture of carbon dioxide (CO) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called .

View Article and Find Full Text PDF

Acid-modified corn straw biochar immobilized Pseudomonas hibiscus CN-1 facilitated the bioremediation of carbendazim-contaminated soil.

J Environ Manage

December 2024

Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong, 266109, China. Electronic address:

Carbendazim application in agroecosystems has posed potential threats to ecosystems and human health. The utilization of biochar-based materials for immobilizing microorganisms offers a sustainable strategy for effective bioremediation. In this study, a novel highly efficient carbendazim-degrading bacterium Pseudomonas hibiscus CN-1 was isolated and immobilized using corn straw-based biochar as a carrier.

View Article and Find Full Text PDF
Article Synopsis
  • Endocannabinoids show promise in reducing neuroinflammation related to Alzheimer's disease (AD) by potentially rebalancing autophagic mechanisms.
  • Researchers administered URB597, an FAAH inhibitor that increases anandamide levels, to both microglial cultures and Tg2576 transgenic mice.
  • The treatment led to a shift in microglia toward an anti-inflammatory state, reduced amyloid plaque formation, and restored key autophagy markers, indicating a possible therapeutic approach for AD.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!