While blood-contacting materials are widely deployed in medicine in vascular stents, catheters, and cannulas, devices fail in situ because of thrombosis and restenosis. Furthermore, microbial attachment and biofilm formation is not an uncommon problem for medical devices. Even incremental improvements in hemocompatible materials can provide significant benefits for patients in terms of safety and patency as well as substantial cost savings. Herein, a novel but simple strategy is described for coating a range of medical materials, that can be applied to objects of complex geometry, involving plasma-grafting of an ultrathin hyperbranched polyglycerol coating (HPG). Plasma activation creates highly reactive surface oxygen moieties that readily react with glycidol. Irrespective of the substrate, coatings are uniform and pinhole free, comprising O─C─O repeats, with HPG chains packing in a fashion that holds reversibly binding proteins at the coating surface. In vitro assays with planar test samples show that HPG prevents platelet adhesion and activation, as well as reducing (>3 log) bacterial attachment and preventing biofilm formation. Ex vivo and preclinical studies show that HPG-coated nitinol stents do not elicit thrombosis or restenosis, nor complement or neutrophil activation. Subcutaneous implantation of HPG coated disks under the skin of mice shows no evidence of toxicity nor inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202401545DOI Listing

Publication Analysis

Top Keywords

hyperbranched polyglycerol
8
thrombosis restenosis
8
biofilm formation
8
study structure
4
structure hyperbranched
4
polyglycerol coatings
4
coatings antibiofouling
4
antibiofouling antithrombotic
4
antithrombotic applications
4
applications blood-contacting
4

Similar Publications

Na-Complexed Dendritic Polyglycerols for Recovery of Frozen Cells and Their Network in Media.

Adv Mater

December 2024

Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.

In this study, a novel phenomenon is identified where precise control of topology and generation of polyglycerol induce the retention of Na ions in biological buffer systems, effectively inhibiting ice crystal growth during cryopreservation. Unlike linear and hyperbranched counterparts, densely-packed hydroxyl and ether groups in 4th-generation dendritic polyglycerol interact with the ions, activating the formation of hydrogen bonding at the ice interface. By inhibiting both intra- and extracellular ice growth and recrystallization, this biocompatible dendritic polyglycerol proves highly effective as a cryoprotectant; hence, achieving the cell recovery rates of ≈134-147%, relative to those of 10% dimethyl sulfoxide, which is a conventional cryoprotectant for human tongue squamous carcinoma (HSC-3) cell line and human umbilical vein endothelial (HUVEC) cells.

View Article and Find Full Text PDF

Multiple hour antifibrotic drug release enabled by a thermosensitive quadpolymer.

Int J Pharm

January 2025

Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710; Department of Chemistry and Biochemistry, North Carolina Central University, Durham, NC 27707. Electronic address:

Article Synopsis
  • The study focuses on an innovative thermosensitive quadpolymer designed for injection to deliver anti-fibrotic drugs, specifically targeting uterine fibroids while potentially preserving fertility.
  • The quadpolymer functions as an injectable solution at room temperature and transforms into a stable gel at body temperature, allowing for sustained release of the drug pirfenidone.
  • Results showed that the pirfenidone-loaded quadpolymer effectively inhibited fibroid cell proliferation, indicating its potential as a localized treatment option for uterine fibroid therapy.
View Article and Find Full Text PDF

The interaction of unfractionated heparin (UFH) with universal heparin reversal agent 7 (UHRA-7) is investigated. UHRA-7 is composed of a hyperbranched polyglycerol core onto which an array of methylated tris(2-aminoethylamine) (Me-TREN) charged groups is grafted, which in turn are shielded with a layer of small chain poly(ethylene glycol) methyl ether (mPEG) chains. This system has previously been shown to be biocompatible and to be effective at neutralizing heparin.

View Article and Find Full Text PDF

This paper reports the development of a highly crosslinked hyper-branched polyglycerol (HPG) polymer bound to elastin-like proteins (ELPs) to create a membrane that undergoes a distinct closed-to-open permeation transition at 32 °C. The crosslinked HPG forms a robust, mesoporous structure (150-300 nm pores), suitable for selective filtration. The membranes were characterized by FTIR, UV-visible spectroscopy, SEM, and AFM, revealing their structural and morphological properties.

View Article and Find Full Text PDF

In the present study, low molecular weight cyclic polyglycidol is used as a macroinitiator for hypergrafting glycidol and producing cyclic graft hyperbranched polyglycerol (cPG-g-hbPG) in the molecular weight range of 10-10 g mol. Linear graft hyperbranched polyglycerol (linPG-g-hbPG) and hyperbranched polyglycerol (hbPG) are prepared as reference samples. This creates a family of hbPG structures with cyclic, linear, and star cores, allowing to evaluate their properties in solution and in bulk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!