Elucidating Heavy-Atom-Tunneling Kinetics in the Cope Rearrangement of Semibullvalene.

Chemistry

Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, 4 Place Jussieu, 75005, Paris, France.

Published: October 2024

AI Article Synopsis

  • This study uses molecular dynamics simulations to explore how temperature affects kinetic properties in heavy atom tunneling reactions, specifically focusing on the Cope rearrangement of semibullvalene while incorporating nuclear quantum effects (NQEs).
  • The research finds that NQEs significantly influence the temperature-dependent behavior of free energy barriers and reaction rates, contrasting with classical dynamics where the activation free energy shows minimal temperature dependence.
  • Results reveal a transition in quantum effects from being restricted to zero point energy at higher temperatures to a regime dominated by tunneling at low temperatures, providing faster reaction rates; comparisons with experimental data and semi-classical theory show consistency in behavior across the temperature ranges.

Article Abstract

In this work, we characterize the temperature dependence of kinetic properties in heavy atom tunneling reactions by means of molecular dynamics simulations, including nuclear quantum effects (NQEs) via Path Integral theory. To this end, we consider the prototypical Cope rearrangement of semibullvalene. The reaction was studied in the 25-300 K temperature range observing that the inclusion of NQEs modifies the temperature behavior of both free energy barriers and dynamical recrossing factors with respect to classical dynamics. Notably, while in classical simulations the activation free energy shows a very weak temperature dependence, it becomes strongly dependent on temperature when NQEs are included. This temperature behavior shows a transition from a regime where the quantum effects are limited and can mainly be traced back to zero point energy, to a low temperature regime where tunneling plays a dominant role. In this regime, the free energy curve tunnels below the potential energy barrier along the reaction coordinate, allowing much faster reaction rates. Finally, the temperature dependence of the rate constants obtained from molecular dynamics simulations was compared with available experimental data and with semi-classical transition state theory calculations, showing comparable behaviors and similar transition temperatures from thermal to (deep) tunneling regime.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202401000DOI Listing

Publication Analysis

Top Keywords

temperature dependence
12
free energy
12
cope rearrangement
8
rearrangement semibullvalene
8
temperature
8
molecular dynamics
8
dynamics simulations
8
quantum effects
8
temperature behavior
8
energy
5

Similar Publications

Novel technique to produce porous thermochromic VO nanoparticle films using gas aggregation source.

Sci Rep

January 2025

Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague 8, Czech Republic.

Vanadium dioxide (VO) is a phase transition material that undergoes semiconductor-to-metal transition at the temperature of about 68 °C. This extraordinary feature triggered intensive research focused on the controlled synthesis of VO. In this study, we introduce and investigate an original linker- and solvent-free strategy enabling the production of highly porous VO nanoparticle-based films.

View Article and Find Full Text PDF

Temperature-dependent pathways in carbon dioxide electroreduction.

Sci Bull (Beijing)

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. Electronic address:

Temperature affects both the thermodynamics of intermediate adsorption and the kinetics of elementary reactions. Despite its extensive study in thermocatalysis, temperature effect is typically overlooked in electrocatalysis. This study investigates how electrolyte temperature influences CO electroreduction over Cu catalysts.

View Article and Find Full Text PDF

The effect of thermal stress on the X-organ/sinus gland proteome of the estuarine blue crab Callinectes sapidus during the intermolt and premolt stages.

J Proteomics

January 2025

Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, USA.

Survival of brachyuran crabs is temperature-dependent and thermal stress promotes changes during molting. We aimed to decipher the impact of thermal stresses on the X-organ/sinus gland (XO/SG) complex, a temperature-sensitive neuroendocrine tissue involved in the molting regulation of Callinectes sapidus during the intermolt and premolt phases. We employed a proteogenomic approach using specimens subjected to control (24 °C), cold (19 °C), and heat (29 °C) temperatures.

View Article and Find Full Text PDF

A translational review of hyperthermia biology.

Int J Hyperthermia

December 2025

Gustavo S. Montana Distinguished Professor Emeritus of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA.

This review was written to be included in the Special Collection 'Therapy Ultrasound: Medicine's Swiss Army Knife?' The purpose of this review is to provide basic presentation and interpretation of the fundamentals of hyperthermia biology, as it pertains to uses of therapeutic ultrasound. The fundamentals are presented but in the setting of a translational interpretation and a view toward the future. Subjects that require future research and development are highlighted.

View Article and Find Full Text PDF

α-Amylases, constituting a significant share of the enzyme market, are mainly synthesized by the genus Bacillus. Enzymes tailored for specific industrial applications are needed to meet the growing demand across a range of industries, and thus finding new amylases and optimizing the ones that already exist are extremely important. This study reports the successful expression, characterization and immobilization of P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!