Dysregulation of persistent inward and outward currents in spinal motoneurons of symptomatic SOD1-G93A mice.

J Physiol

Department of Biomedical, Industrial, and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, OH, USA.

Published: August 2024

Persistent inward currents (PICs) and persistent outward currents (POCs) regulate the excitability and firing behaviours of spinal motoneurons (MNs). Given their potential role in MN excitability dysfunction in amyotrophic lateral sclerosis (ALS), PICs have been previously studied in superoxide dismutase 1 (SOD1)-G93A mice (the standard animal model of ALS); however, conflicting results have been reported on how the net PIC changes during disease progression. Also, individual PICs and POCs have never been examined before in symptomatic ALS. To fill this gap, we measured the net and individual PIC and POC components of wild-type (WT) and SOD MNs in current clamp and voltage clamp during disease progression (assessed by neuroscores). We show that SOD MNs of symptomatic mice experience a much larger net PIC, relative to WT cells from age-matched littermates. Specifically, the Na and Ca PICs are larger, whereas the lasting SK-mediated (SK) POC is smaller than WT (Na PIC is the largest and SK POC is the smallest components in SOD MNs). We also show that PIC dysregulation is present at symptom onset, is sustained throughout advanced disease stages and is proportional to SOD MN cell size (largest dysregulation is in the largest SOD cells, the most vulnerable in ALS). Additionally, we show that studying disease progression using neuroscores is more accurate than using SOD mouse age, which could lead to misleading statistics and age-based trends. Collectively, this study contributes novel PIC and POC data, reveals ionic mechanisms contributing to the vulnerability differential among MN types/sizes, and provides insights on the roles PIC and POC mechanisms play in MN excitability dysfunction in ALS. KEY POINTS: Individual persistent inward currents (PICs) and persistent outward currents (POCs) have never been examined before in spinal motoneurons (MNs) of symptomatic amyotrophic lateral sclerosis (ALS) mice. Thus, we contribute novel PIC and POC data to the ALS literature. Male SOD MNs of symptomatic mice have elevated net PIC, with larger Na and Ca PICs but reduced SK POC vs. wild-type littermates. Na PIC is the largest and SK POC is the smallest current in SOD cells. The PIC/POC dysregulation is present at symptom onset. PIC dysregulation is sustained throughout advanced disease, and is proportional to SOD MN size (largest dysregulation is in the largest cells, the most vulnerable in ALS). Thus, we reveal ionic mechanisms contributing to the vulnerability differential among MN types/sizes in ALS. Studying disease progression using SOD mice neuroscores is more accurate than using age, which could distort the statistical differences between SOD and WT PIC/POC data and the trends during disease progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11293966PMC
http://dx.doi.org/10.1113/JP286032DOI Listing

Publication Analysis

Top Keywords

disease progression
20
pic poc
16
sod mns
16
persistent outward
12
outward currents
12
spinal motoneurons
12
net pic
12
mns symptomatic
12
pic
11
sod
11

Similar Publications

Background: Nephrology has seen an uptake in transition to remote care delivery. The impact of telenephrology care on chronic kidney disease (CKD) progression is not well defined.

Methods: We analyzed data from patients naturally selected for telenephrology versus standard, in-person visits.

View Article and Find Full Text PDF

Cataracts are significant causes of blindness, closely linked to prolonged hypercholesterolemia. While saffron has the potential for eye health, its effects on lens lesions remain understudied. This study aimed to investigate the effect of saffron on the lens changes in atherosclerotic-induced New Zealand white rabbits (NZWR).

View Article and Find Full Text PDF

ADAR is highly expressed and correlated with poor prognosis in hepatocellular carcinoma (HCC), yet the role of its constitutive isoform ADARp110 in tumorigenesis remains elusive. We investigated the role of ADARp110 in HCC and underlying mechanisms using clinical samples, a hepatocyte-specific knock-in mouse model, and engineered cell lines. ADARp110 is overexpressed and associated with poor survival in both human and mouse HCC.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality globally, with oxidative stress playing a pivotal role in its progression. Free radicals produced via oxidative stress contribute to lipid peroxidation, leading to subsequent inflammatory responses, which then result in atherosclerosis. Antioxidants inhibit these harmful effects through their reducing ability, thereby preventing oxidative damage.

View Article and Find Full Text PDF

Background And Objective: Neurofibromatosis-1 (NF1) dystrophic scoliosis is a challenging disease to manage surgically, with multiplanar curves progressing rapidly and unpredictably. Conservative management with bracing is often unsuccessful, and many patients necessitate instrumented fusion to halt progression of their curves. In rare cases, patients can present with spontaneous vertebral subluxation, significantly complicating the surgical management of this already complex disease process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!