Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Optical quantum memories are key elements in modern quantum technologies to reliably store and retrieve quantum information. At present, they are conceptually limited to the optical wavelength regime. Recent advancements in x-ray quantum optics render an extension of optical quantum memory protocols to ultrashort wavelengths possible, thereby establishing quantum photonics at x-ray energies. Here, we introduce an x-ray quantum memory protocol that utilizes mechanically driven nuclear resonant Fe absorbers to form a comb structure in the nuclear absorption spectrum by using the Doppler effect. This room-temperature nuclear frequency comb enables us to control the waveform of x-ray photon wave packets to a high level of accuracy and fidelity using solely mechanical motions. This tunable, robust, and highly flexible system offers a versatile platform for a compact solid-state quantum memory at room temperature for hard x-rays.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11204287 | PMC |
http://dx.doi.org/10.1126/sciadv.adn9825 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!