Objective: The aim of this study was to explore whether machine learning model based on computed tomography (CT) radiomics and clinical characteristics can differentiate Epstein-Barr virus-associated gastric cancer (EBVaGC) from non-EBVaGC.

Methods: Contrast-enhanced CT images were collected from 158 patients with GC (46 EBV-positive, 112 EBV-negative) between April 2018 and February 2023. Radiomics features were extracted from the volumes of interest. A radiomics signature was built based on radiomics features by the least absolute shrinkage and selection operator logistic regression algorithm. Multivariate analyses were used to identify significant clinicoradiological variables. We developed 6 ML models for EBVaGC, including logistic regression, Extreme Gradient Boosting, random forest (RF), support vector machine, Gaussian Naive Bayes, and K-nearest neighbor algorithm. The area under the receiver operating characteristic curve (AUC), the area under the precision-recall curves (AP), calibration plots, and decision curve analysis were applied to assess the effectiveness of each model.

Results: Six ML models achieved AUC of 0.706-0.854 and AP of 0.480-0.793 for predicting EBV status in GC. With an AUC of 0.854 and an AP of 0.793, the RF model performed the best. The forest plot of the AUC score revealed that the RF model had the most stable performance, with a standard deviation of 0.003 for AUC score. RF also performed well in the testing dataset, with an AUC of 0.832 (95% confidence interval: 0.679-0.951), accuracy of 0.833, sensitivity of 0.857, and specificity of 0.824, respectively.

Conclusions: The RF model based on clinical variables and Rad_score can serve as a noninvasive tool to evaluate the EBV status of gastric cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1097/RCT.0000000000001636DOI Listing

Publication Analysis

Top Keywords

machine learning
8
based computed
8
computed tomography
8
tomography radiomics
8
radiomics clinical
8
clinical characteristics
8
epstein-barr virus-associated
8
virus-associated gastric
8
model based
8
gastric cancer
8

Similar Publications

The feasibility of using machine learning to predict COVID-19 cases.

Int J Med Inform

January 2025

School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, United Kingdom. Electronic address:

Background: Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported epidemic data, particularly in underdeveloped regions with limited access to COVID-19 test kits and healthcare infrastructure. In the post-COVID era, this issue remains crucial.

View Article and Find Full Text PDF

Identification of an ANCA-associated vasculitis cohort using deep learning and electronic health records.

Int J Med Inform

January 2025

Rheumatology and Allergy Clinical Epidemiology Research Center and Division of Rheumatology, Allergy, and Immunology, and Mongan Institute, Department of Medicine, Massachusetts General Hospital Boston MA USA. Electronic address:

Background: ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electronic health records (EHR) can more accurately identify AAV cases.

View Article and Find Full Text PDF

Background: The application of natural language processing in medicine has increased significantly, including tasks such as information extraction and classification. Natural language processing plays a crucial role in structuring free-form radiology reports, facilitating the interpretation of textual content, and enhancing data utility through clustering techniques. Clustering allows for the identification of similar lesions and disease patterns across a broad dataset, making it useful for aggregating information and discovering new insights in medical imaging.

View Article and Find Full Text PDF

Diagnosis of lung cancer using salivary miRNAs expression and clinical characteristics.

BMC Pulm Med

January 2025

Universal Scientific Education and Research Network (USERN), Tehran, Iran.

Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!