Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This research presents a novel conformable-Caputo fractional non-polynomial spline method for solving the time-fractional Korteweg-de Vries (KdV) equation. Emphasizing numerical analysis and algorithm development, the method offers enhanced precision and modeling capabilities. Evaluation via the Von Neumann method demonstrates unconditional stability within defined parameters. Comparative analysis, supported by contour and 2D/3D graphs, validates the method's accuracy and efficiency against existing approaches. Quantitative assessment using L2 and L∞ error norms confirms its superiority. In conclusion, the study proposes a robust solution for the time-fractional KdV equation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207126 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303760 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!