The volume of human carbon (δ13C) and nitrogen (δ15N) isotope data produced in archaeological research has increased markedly in recent years. However, knowledge of bone remodelling, its impact on isotope variation, and the temporal resolution of isotope data remains poorly understood. Varied remodelling rates mean different elements (e.g., femur and rib) produce different temporal signals but little research has examined intra-element variability. This study investigates human bone remodelling using osteon population density and the relationship with carbon and nitrogen isotope data at a high resolution, focusing on variation through femoral cross-sections, from periosteal to endosteal surfaces. Results demonstrate considerable differences in isotope values between cross-sectional segments of a single fragment, by up to 1.3‰ for carbon and 1.8‰ for nitrogen, illustrating the need for standardised sampling strategies. Remodelling also varies between bone sections, occurring predominantly within the endosteal portion, followed by the midcortical and periosteal. Therefore, the endosteal portion likely reflects a shorter period of life closer to the time of death, consistent with expectations. By contrast, the periosteal surface provides a longer average, though there were exceptions to this. Results revealed a weak negative correlation between osteon population density and δ15N or δ13C, confirming that remodelling has an effect on isotope values but is not the principal driver. However, a consistent elevation of δ15N and δ13C (0.5‰ average) was found between the endosteal and periosteal regions, which requires further investigation. These findings suggest that, with further research, there is potential for single bone fragments to reconstruct in-life dietary change and mobility, thus reducing destructive sampling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11207156 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305089 | PLOS |
J Anal Toxicol
January 2025
ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USA.
Unlabelled: Background - Alcohol is the most abused substance in Western society, resulting in major economic losses and negative health consequences. Therefore, there is a need for a selective and robust detection method for alcohol consumption in various clinical and forensic settings. This study aimed to validate a mass spectrometry method for quantifying phosphatidylethanol (PEth) and perform retrospective data analysis from the patient population of a national reference laboratory.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Joint Drug Development and Innovation Centre for Neurological Disorders of Lanzhou University-China National Biotec Group-Lanzhou Biotechnology Development Co., School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, PR China; MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, Gansu, 730000, PR China. Electronic address:
Background: Botulinum neurotoxin type A (BoNT/A) is the most potent and prevalent neurotoxin known to cause botulism, and is also widely used in medical and cosmetic applications. The detection of BoNT/A is of great significance for botulism diagnosis and drug potency determination. Currently, the mouse bioassay (MBA) has long been the gold standard method but has disadvantages of ethical concerns, long testing duration, and high costs.
View Article and Find Full Text PDFSci Data
January 2025
Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, 07745, Germany.
Here, we present the North American Repository for Archaeological Isotopes (NARIA), the largest open-access compilation of previously reported isotopic measurements (n = 28,374) from bioarchaeological samples in North America (i.e., Canada, Greenland, Mexico, and the United States of America) covering a time-frame of more than 12,000 years.
View Article and Find Full Text PDFStud Hist Philos Sci
January 2025
Department of Philosophy, University of Pennsylvania, United States. Electronic address:
Philosophers of the historical sciences have focused to a significant extent on the problem of epistemic access facing these sciences: how do historical scientists overcome the relative scarcity of data about the past, compared to the present? Solving this problem usually requires solving another one, which I call the 'problem of ontic access:' how do historical scientists get access to entities and processes with properties that are potentially informative about the past? The case of geochronology illustrates one solution to this problem: historical scientists can get access to entities and processes with properties that are potentially informative about the past by exploiting the metaphysical structure of their domain. Geochronology experienced a spectacular explosion of its research boundaries in the 20th century. I explain this productivity by analyzing the ontology implicit in geochronological techniques.
View Article and Find Full Text PDFAm J Biol Anthropol
January 2025
Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.
Introduction: Contemporary dietary and nutritional transitions are commonplace, but difficult to study directly. In Brazil, and Latin America, this generalized process, leading to current obesity and malnutrition problems, started more than four decades ago. Although body weight and food availability are used to measure changes, not much information on food consumption and nutrition exist.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!