(S)-ML-SA1 Activates Autophagy via TRPML1-TFEB Pathway.

Chembiochem

Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil.

Published: November 2024

Autophagic flux plays a crucial role in various diseases. Recently, the lysosomal ion channel TRPML1 has emerged as a promising target in lysosomal storage diseases, such as mucolipidosis. The discovery of mucolipin synthetic agonist-1 (ML-SA1) has expanded our understanding of TRPML1's function and its potential therapeutic uses. However, ML-SA1 is a racemate with limited cellular potency and poor water solubility. In this study, we synthetized rac-ML-SA1, separated the enantiomers by chiral liquid chromatography and determined their absolute configuration by vibrational circular dichroism (VCD). In addition, we focused on investigating the impact of each enantiomer of ML-SA1 on the TRPML1-TFEB axis. Our findings revealed that (S)-ML-SA1 acts as an agonist for TRPML1 at the lysosomal membrane. This activation prompts transcription factor EB (TFEB) to translocate from the cytosol to the nucleus in a dose-dependent manner within live cells. Consequently, this signaling pathway enhances the expression of coordinated lysosomal expression and regulation (CLEAR) genes and activates autophagic flux. Our study presents evidence for the potential use of (S)-ML-SA1 in the development of new therapies for lysosomal storage diseases that target TRPML1.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.202400506DOI Listing

Publication Analysis

Top Keywords

autophagic flux
8
lysosomal storage
8
storage diseases
8
lysosomal
5
s-ml-sa1 activates
4
activates autophagy
4
autophagy trpml1-tfeb
4
trpml1-tfeb pathway
4
pathway autophagic
4
flux plays
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!