Human sperm functioning is crucial for maintaining natural reproduction, but its sterility is enhanced by variations in environmental conditions. Because of these agitating properties, powerful computer-aided devices are required, but their precision is inadequate, particularly when it comes to samples with low sperm concentrations. Therefore, for the first time, this article introduces the sulfide material-based structure for the detection of human sperm samples using the prism-based surface plasmon resonance sensor (SPR) Nano-biosensor. The proposed structure is designed on the basis of a prism-based Kretschmann configuration and includes silver, silicon, a sulfide layer, black phosphorus, and a sensing medium. This work takes advantage of the excitement of surface plasmons and evanescent waves in the metal dielectric region. For the detection process, seven sperm samples are taken, with their concentration, mobility, and refractive index measured by the refractometer. The proposed structure provides a maximum sensitivity of 409.17°/RIU, QF of 97.45RIU and a DA of 1.37. The results provide a substantial improvement in comparison to the reported work in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNB.2024.3419571DOI Listing

Publication Analysis

Top Keywords

human sperm
12
spr nano-biosensor
8
detection human
8
sperm samples
8
proposed structure
8
sperm
5
design probing
4
probing prism-based
4
prism-based spr
4
nano-biosensor human
4

Similar Publications

Fluoxetine is used in the management of depression, anxiety and other mood disorders by increasing serotonin levels in the brain and can cause sexual side effects by changing the homeostasis of sex hormones and increasing oxidative stress. Since many men who take fluoxetine are of reproductive age and sperm are exposed to fluoxetine for a considerable time, this study aimed to examine the in vitro effects of fluoxetine on human sperm biochemical markers and sperm parameters. Semen samples from 30 fertile men were divided into three groups: a positive control group, a negative control group and a fluoxetine-treated group.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) are persistent environmental contaminants found in human tissues and persist in the environment, posing significant risks to reproductive health. This review examines the impact of PFAS exposure on male reproductive health, with a focus on sperm epigenetics. PFASs disrupt endocrine function by altering key reproductive hormones and impairing sperm motility, quality, and viability.

View Article and Find Full Text PDF

Recent advances in embryology have shown that the sister blastomeres of 2-cell mouse and human embryos differ reciprocally in potency. An open question is whether the blastomeres became different as opposed to originating as different. Here we wanted to test two conflicting models: one proposing that each blastomere contains both animal and vegetal materials in balanced proportions because the plane of first cleavage runs close to the animal-vegetal axis of the fertilized oocyte; and the other model proposing that each blastomere contains variable proportions of animal and vegetal materials because the plane of the first cleavage can vary depending on the topology of fertilization.

View Article and Find Full Text PDF

Background: Gonadotropin-releasing hormone agonists (GnRHa) are commonly used in assisted reproduction technology (ART) cycles to prevent a luteinising hormone (LH) surge during controlled ovarian hyperstimulation (COH) prior to planned oocyte retrieval, thus optimising the chances of live birth. We compared the benefits and risks of the different GnRHa protocols used.

Objectives: To evaluate the effectiveness and safety of different GnRHa protocols used as adjuncts to COH in women undergoing ART.

View Article and Find Full Text PDF

Cryopreservation of bull sperm, crucial for breeding and assisted reproduction, often reduces sperm quality due to oxidative stress. This study examines how oxidative stress during cryopreservation affects peroxiredoxin 5 (PRDX5) and peroxiredoxin 6 (PRDX6) proteins, leading to their translocation and oligomerization in bull sperm. Increased reactive oxygen species (ROS) and nitric oxide (NO) levels were linked to reduced mitochondrial potential, higher DNA fragmentation, and increased membrane fluidity, prompting PRDX5 to move intracellularly and PRDX6 to the cell membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!