Neural manifolds in V1 change with top-down signals from V4 targeting the foveal region.

Cell Rep

Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany; Institute of Zoology, University of Cologne, Cologne, Germany.

Published: July 2024

High-dimensional brain activity is often organized into lower-dimensional neural manifolds. However, the neural manifolds of the visual cortex remain understudied. Here, we study large-scale multi-electrode electrophysiological recordings of macaque (Macaca mulatta) areas V1, V4, and DP with a high spatiotemporal resolution. We find that the population activity of V1 contains two separate neural manifolds, which correlate strongly with eye closure (eyes open/closed) and have distinct dimensionalities. Moreover, we find strong top-down signals from V4 to V1, particularly to the foveal region of V1, which are significantly stronger during the eyes-open periods. Finally, in silico simulations of a balanced spiking neuron network qualitatively reproduce the experimental findings. Taken together, our analyses and simulations suggest that top-down signals modulate the population activity of V1. We postulate that the top-down modulation during the eyes-open periods prepares V1 for fast and efficient visual responses, resulting in a type of visual stand-by state.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2024.114371DOI Listing

Publication Analysis

Top Keywords

neural manifolds
16
top-down signals
12
foveal region
8
population activity
8
eyes-open periods
8
neural
4
manifolds change
4
top-down
4
change top-down
4
signals targeting
4

Similar Publications

A hybrid network using transformer with modified locally linear embedding and sliding window convolution for EEG decoding.

J Neural Eng

December 2024

West China Hospital of Sichuan University, No.37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, Chengdu, Sichuan, 610041, CHINA.

Objective: Brain-computer interface(BCI) is leveraged by artificial intelligence in EEG signal decoding, which makes it possible to become a new means of human-machine interaction. However, the performance of current EEG decoding methods is still insufficient for clinical applications because of inadequate EEG information extraction and limited computational resources in hospitals. This paper introduces a hybrid network that employs a Transformer with modified locally linear embedding and sliding window convolution for EEG decoding.

View Article and Find Full Text PDF

Volition is conceived as a set of orchestrated executive functions, which can be characterized by features, such as reason-based and goal-directedness, driven by endogenous signals. The lateral prefrontal cortex (LPFC) has long been considered to be responsible for cognitive control and executive function, and its neurodynamics appears to be central to goal-directed cognition. In order to address both associative processes (i.

View Article and Find Full Text PDF

In this study, we investigate the impact of first and second-order coupling strengths on the stability of a synchronization manifold in a Discrete FitzHugh-Nagumo (DFHN) neuron model with memristor coupling. Master Stability Function (MSF) is used to estimate the stability of the synchronized manifold. The MSF of the DFHN model exhibits two zero crossings as we vary the coupling strengths, which is categorized as class .

View Article and Find Full Text PDF

The integration and interaction of cross-modal senses in brain neural networks can facilitate high-level cognitive functionalities. In this work, we proposed a bioinspired multisensory integration neural network (MINN) that integrates visual and audio senses for recognizing multimodal information across different sensory modalities. This deep learning-based model incorporates a cascading framework of parallel convolutional neural networks (CNNs) for extracting intrinsic features from visual and audio inputs, and a recurrent neural network (RNN) for multimodal information integration and interaction.

View Article and Find Full Text PDF

Objective: Measuring causal brain network from neurophysiological signals has recently attracted much attention in the field of neuroinformatics. Traditional data-driven algorithms are computationally time-consuming and unstable due to parameter settings.

Approach: To resolve these limits, we proposed a novel parameter-free technique, called "non-parametric full cross mapping (NFCM)".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!