AI Article Synopsis

  • Electrocatalytic nitrite reduction (eNORR) is an innovative method for ammonia production, utilizing molecular catalysts that reduce nitrite to ammonia while enhancing performance with secondary functionalities.
  • The study demonstrates that incorporating a Fe-porphyrin catalyst into a 2D Metal-Organic Framework (MOF) enhances the efficiency of eNORR, achieving high faradaic efficiency (up to 90%) and increased reaction rates.
  • The research highlights the importance of proton-relaying agents, which improve catalytic activity by stabilizing reactive intermediates, providing valuable insights for optimizing heterogeneous electrocatalytic systems.

Article Abstract

Electrocatalytic nitrite reduction (eNORR) is a promising alternative route to produce ammonia (NH). Until now, several molecular catalysts have shown capability to homogeneously reduce nitrite to NH, while taking advantage of added secondary-sphere functionalities to direct catalytic performance. Yet, realizing such control over heterogeneous electrocatalytic surfaces remains a challenge. Herein, we demonstrate that heterogenization of a Fe-porphyrin molecular catalyst within a 2D Metal-Organic Framework (MOF), allows efficient eNORR to NH. On top of that, installation of pendant proton relaying moieties proximal to the catalytic site, resulted in significant improvement in catalytic activity and selectivity. Notably, systematic manipulation of NH faradaic efficiency (up to 90 %) and partial current (5-fold increase) was achieved by varying the proton relay-to-catalyst molar ratio. Electrochemical and spectroscopic analysis show that the proton relays simultaneously aid in generating and stabilizing of reactive Fe-bound NO intermediate. Thus, this concept offers new molecular tools to tune heterogeneous electrocatalytic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202407667DOI Listing

Publication Analysis

Top Keywords

metal-organic framework
8
heterogeneous electrocatalytic
8
pendant proton-relays
4
proton-relays systematically
4
systematically tune
4
tune rate
4
rate selectivity
4
electrocatalytic
4
selectivity electrocatalytic
4
electrocatalytic ammonia
4

Similar Publications

Enzymes, composed of earth-abundant elements, outperform conventional heterogeneous photocatalysts in hydrogen production due to the dual-site cooperation between adjacent active metal sites and proton-transferring ligands. However, the realization of such dual-site cooperation in heterogeneous catalytic systems is hindered by the challenges in the precise construction of cooperative active sites. In this study, we present the design of a structurally tuned metal-organic framework (MOF) photocatalyst that incorporates cooperative Brønsted acid-single atom catalytic sites.

View Article and Find Full Text PDF

Transition metal oxides (TMOs), especially zinc- and iron-based materials, are known to be one of the most innovative anode materials based on their high theoretical capacity, low price and abundant natural reserves. However, the application of these materials is limited by poor electronic conductivity, slow ion mobility and large structural transformations during charging/discharging processes. To overcome these drawbacks, sacrificial template technology has been proposed as a promising strategy to optimize the electrochemical performance and structure stability of TMOs, showing its potential especially in the storage design of lithium-ion batteries (LIBs).

View Article and Find Full Text PDF

Design of cerium dioxide anchored in cobalt-iron layered double hydroxide hollow polyhedra via an ion exchange strategy for the oxygen evolution reaction.

J Colloid Interface Sci

December 2024

State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, 071002 Baoding, PR China. Electronic address:

The oxygen evolution reaction (OER) is hindered by slow kinetics due to its four-electron process, limiting overall efficiency. The rational design of metal-organic framework (MOF)-based nanomaterials is crucial for enhancing the oxygen production rate. Using a straightforward strategy, we synthesized cobalt-iron layered double hydroxide (CoFe-LDH) hollow polyhedra loaded with CeO, with zeolite imidazolate framework-67 (ZIF-67) serving as the precursor.

View Article and Find Full Text PDF

Reticulating Crystalline Porous Materials for Asymmetric Heterogeneous Catalysis.

Adv Mater

December 2024

School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China.

Asymmetric catalysis is essential for addressing the increasing demand for enantiopure compounds. Recent advances in reticular chemistry have demonstrated that metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) possess highly regular porous architectures, exceptional tunability, and the ability to incorporate chiral functionalities through their open channels or cavities. These characteristics make them highly effective and enantioselective catalysts for a wide range of asymmetric transformations.

View Article and Find Full Text PDF

Organophosphate pesticides can cause long-term neurological damage to humans. There is an urgent need to develop a more sensitive and efficient method for detecting trace amounts of organophosphorus pesticides in orange juice, particularly in the presence of interfering substances. This study developed a dispersive solid-phase extraction (DSPE) method using amorphous UiO-66 (aUiO-66) as an adsorbent for the detection of four organophosphate pesticides (fenthion, profenofos, fensulfothion, and chlorpyrifos) in orange juice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!